Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Ta có
\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)
Mà \(y+1\ge2\sqrt{y}\)
=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)
Khi đó
\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)
Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)
=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)
Vậy MinP=3 khi x=y=z=1
2. Xem tại đây
1. \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)
\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)
\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=1\)
1 ) có cách theo cosi đó
áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)
\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)
\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)
cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)
minP=3 khi x=y=z=1
Ta có:
\(3=x+y+z\ge3\sqrt[3]{xyz}\)
\(\Leftrightarrow xyz\le1\)
Ta lại có:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{3}{\sqrt[6]{xyz}}\ge\frac{3}{1}=3\)
\(P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1}\)( Vì xyz=1 nên \(\sqrt{xyz}=1\))
\(P=\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{y}+1+\sqrt{yz}\right)}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{z}\left(\sqrt{x}+1+\sqrt{xy}\right)}\)
\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{1}{\sqrt{x}+1+\sqrt{xy}}\)
\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{\sqrt{xyz}}{\sqrt{x}\left(1+\sqrt{yz}+\sqrt{y}\right)}\)
\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{\sqrt{yz}}{\sqrt{y}+1+\sqrt{yz}}=\frac{\sqrt{y}+1+\sqrt{yz}}{\sqrt{y}+1+\sqrt{yz}}=1\)
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)
=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)
AD bđt cosi vs hai số dương có:
\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)
\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)
Có \(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))
=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)
<=> P \(\ge4.5\)
Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)
=> a=2,b=3
Vậy minP=4.5 <=>a=1,b=2
ủa đây toán lớp 9 à