\(x,y,z>0\) thỏa mãn điều kiện  \(x+y+z=1\). Tìm GTNN...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có : 

\(S=\frac{1}{x}+\frac{1}{4y}+\frac{1}{16z}=\frac{1}{x}+\frac{\frac{1}{4}}{y}+\frac{\frac{1}{16}}{z}\ge\frac{\left(1+\frac{1}{2}+\frac{1}{4}\right)^2}{x+y+z}=\frac{\frac{49}{16}}{1}=\frac{49}{16}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x=\frac{16}{21}\\y=\frac{4}{21}\\z=\frac{1}{21}\end{cases}}\). Vậy GTNN của S = 49/16

29 tháng 8 2021

Giá trị nhỏ nhất là 49/16

29 tháng 8 2021

Giá trị nhỏ nhất là căn 82

29 tháng 8 2021

\(\dfrac{1}{3}\)

29 tháng 8 2021

Giá trị nhỏ nhất là 3

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)

29 tháng 8 2021

Giá trị nhỏ nhất là 2

29 tháng 8 2021

Giá trị lớn nhất là 3

29 tháng 8 2021

Giá trị lớn nhất là 2

29 tháng 8 2021

Gia trị nhỏ nhất là 6

29 tháng 8 2021

Giá trị lớn nhất là 2/17

29 tháng 8 2021

\(\dfrac{2}{17}\)