![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(VT=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{x}{x}+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{y}+\frac{y}{z}+\frac{x}{z}+\frac{y}{z}+\frac{z}{z}\)
\(=3+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{x}\right)\)
Với 2 số a; b dương dễ dàng chứng minh đc: \(\frac{a}{b}+\frac{b}{a}\ge2\) (có thể chứng minh tương đương)
=> VT \(\ge3+2+2+2=9=VP\)=> ĐPCM
dâu = xảy ra khi x = y = z
2) Xét \(M+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(M+3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(M+3=\frac{1}{2}.\left(2a+2b+2c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(M+3=\frac{1}{2}.\left(\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{1}{2}.9=\frac{9}{2}\)(Áp dụng câu 1)
=> M \(\ge\frac{9}{2}-3=\frac{3}{2}\)
min M = 3/2 khi a= b = c
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a.
Ta luôn có
\(\frac{a}{a+b}>\frac{a}{a+b+c}\) (do a+b < a+b+c)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng theo từng vế rồi rút gọn ta đươc đpcm
Cảm ơn b nhé. B biết làm.câu b c d không giúp m với
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}x+y\ge2\sqrt{xy}\\\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\sqrt{xy.\frac{1}{xy}}\)
\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\) ( đpcm )
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}x+y+z\ge3\sqrt{xyz}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt{\frac{1}{xyz}}\end{matrix}\right.\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\sqrt{xyz.\frac{1}{xyz}}\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bđt Cauchy-schwarz ta có:
\(\frac{4}{x+1}+\frac{9}{y+2}+\frac{25}{z+3}\ge\frac{\left(2+3+5\right)^2}{x+1+y+2+z+3}=\frac{10^2}{4+6}=10\)
Dấu "=" \(\Leftrightarrow\frac{2}{x+1}=\frac{3}{y+2}=\frac{5}{z+3}\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Cauchy-Schwarz, ta có:
\(VT\ge\dfrac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=\dfrac{9}{\left(x+y+z\right)^2}=9\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Leftrightarrow\)\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
\(\Leftrightarrow\)\(3+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\ge9\)
CM BĐT phụ: \(a+\frac{1}{a}\ge2\) (a>0) (*)
\(\Leftrightarrow\)\(a^2+1-2a\ge0\) \(\Leftrightarrow\)\(\left(a-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=1\)
Áp dụng BĐT (*) ta có: \(\frac{x}{y}+\frac{y}{x}\ge2;\) \(\frac{x}{z}+\frac{z}{x}\ge2;\) \(\frac{y}{z}+\frac{z}{y}\ge2\)
suy ra: \(3+\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{z}{y}+\frac{y}{z}\ge3+2+2+2=9\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
p/s: dạng BĐT về trình bày mk kém mong các you sửa sai cho