Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x-y-z=0
=>x=y+z; y=x-z; z=x-y
\(K=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y\cdot\left(-z\right)\cdot x}{xyz}=-1\)
b: Tham khảo:
\(x^3+y^3+z^3=3xyz\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)=0\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-zy-zx+z^2\right)-3xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2-xy+y^2-zy-zx+z^2\right)=0\)
\(+,x^2-xy+y^2-yz+z^2-zx=0\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\Rightarrow x=y=z\)
\(\Rightarrow dpcm\)
Ta có :
\(x^3+x^2z+y^2z-xyz+y^3\)
\(=x^3+y^3+x^2z+y^2z-xyz\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2+y^2-xy\right)\)
\(=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)
\(=0\left(x^2-xy+y^2\right)\)
\(=0\left(ĐPCM\right)\)
Bài 1:
Ta có:\(x^2+xy+y^2+1\)
\(=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)
\(=\left(x^2+\dfrac{1}{2}xy\right)+\left(\dfrac{1}{2}xy+\dfrac{1}{4}y^2\right)+\dfrac{3}{4}y^2+1\)
\(=x.\left(x+\dfrac{1}{2}y\right)+\dfrac{1}{2}y.\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2+1\)
\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}y\right)^2\ge0;\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1>0\)
Hay \(x^2+xy+y^2+1>0\) (đpcm)
Chúc bạn học tốt!!!
x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz
= (x+y)^3 + z^3 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z)
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy]
=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
=1/2(x+y+z)(x^2-2xy+y^2+y^2-2yz+z^2+x^2-2xz+z^2)
=1/2(x+y+z)[(x-y)^2+(y-z)^2+(x-z)^2]
mà x^3 + y^3 + z^3 - 3xyz=0
<=> x+y+z=0
Vậy ...
Chúc bạn học tốt .
hoặc (x-y)^2+(y-z)^2+(x-z)^2 =0 mà (x-y)^2,(y-z)^2,(x-z)^2 >=0 mọi x,y,z
=> x-y=y-z=x-z=0 => x=y=z
\(\frac{x+y}{x}+\frac{x+z}{y}+\frac{x+y}{z}+3\)
\(=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{x+y}{z}+1\right)\)
\(=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+x}{z}\)
\(=\frac{0}{z}+\frac{0}{y}+\frac{0}{z}\)
\(=0\)
(x+y)3-3x2y-3xy2+z3-3xyz
=> ((x+y)3+z3)- 3xy(x+y+z)
=>(x+y+z)((x+y)2-z(x+y)+z2)-3xy(x+y+z)
=>(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
vì x+y+z=0 => biểu thúc trên bằng 0
=> x3+y3+z3-3xyz=0
=>x3+y3+z3=3xyz
=>
=>