\(x+y+z=0\). Chứng minh \(x^3+y^3+z^3=3.x.y.z\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

(x+y)3-3x2y-3xy2+z3-3xyz 

=> ((x+y)3+z3)- 3xy(x+y+z)

=>(x+y+z)((x+y)2-z(x+y)+z2)-3xy(x+y+z)

=>(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

vì x+y+z=0 => biểu thúc trên bằng 0

=> x3+y3+z3-3xyz=0

=>x3+y3+z3=3xyz

=>

=>

a: x-y-z=0

=>x=y+z; y=x-z; z=x-y

\(K=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y\cdot\left(-z\right)\cdot x}{xyz}=-1\)

b: Tham khảo:

undefined

10 tháng 9 2019

\(x^3+y^3+z^3=3xyz\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)=0\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-zy-zx+z^2\right)-3xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2-xy+y^2-zy-zx+z^2\right)=0\)

\(+,x^2-xy+y^2-yz+z^2-zx=0\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\Rightarrow x=y=z\)

\(\Rightarrow dpcm\)

Ta có :

\(x^3+x^2z+y^2z-xyz+y^3\)

\(=x^3+y^3+x^2z+y^2z-xyz\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2+y^2-xy\right)\)

\(=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)

\(=0\left(x^2-xy+y^2\right)\)

\(=0\left(ĐPCM\right)\)

9 tháng 6 2017

Bài 1:

Ta có:\(x^2+xy+y^2+1\)

\(=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x^2+\dfrac{1}{2}xy\right)+\left(\dfrac{1}{2}xy+\dfrac{1}{4}y^2\right)+\dfrac{3}{4}y^2+1\)

\(=x.\left(x+\dfrac{1}{2}y\right)+\dfrac{1}{2}y.\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+\dfrac{1}{2}y\right)^2\ge0;\dfrac{3}{4}y^2\ge0\)

\(\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1>0\)

Hay \(x^2+xy+y^2+1>0\) (đpcm)

Chúc bạn học tốt!!!

9 tháng 6 2017

hả ko phải lớp trưởng hay sao mà hcus

12 tháng 5 2016

CM xyz(1/x^3 + 1/y^3 + 1/z^3) = 3 à

12 tháng 5 2016

thế bài này yêu cầu j nhỉ

9 tháng 8 2016

x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz 
= (x+y)^3 + z^3 - 3xy(x + y + z) 
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z) 
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z) 
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy] 

=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)

=1/2(x+y+z)(x^2-2xy+y^2+y^2-2yz+z^2+x^2-2xz+z^2)

=1/2(x+y+z)[(x-y)^2+(y-z)^2+(x-z)^2]

mà x^3 + y^3 + z^3 - 3xyz=0

<=> x+y+z=0

Vậy ...

Chúc bạn học tốt .

hoặc (x-y)^2+(y-z)^2+(x-z)^2 =0 mà (x-y)^2,(y-z)^2,(x-z)^2 >=0 mọi x,y,z

=> x-y=y-z=x-z=0 => x=y=z

10 tháng 3 2017

\(\frac{x+y}{x}+\frac{x+z}{y}+\frac{x+y}{z}+3\)

\(=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{x+y}{z}+1\right)\)

\(=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+x}{z}\)

\(=\frac{0}{z}+\frac{0}{y}+\frac{0}{z}\)

\(=0\)

10 tháng 3 2017

= 0 nha!

Mong rằng các bạn sẽ