Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2+2xyz=1\)
\(\Leftrightarrow2xyz=1-x^2-y^2-z^2\)
\(\Rightarrow P=xy+yz+xz-2xyz=xy+yz+xz+x^2+y^2+z^2-1\)
\(\Rightarrow2P=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2-2\ge1\)
\(\Rightarrow P\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
+) \(P=\sqrt{1-x^2}+\sqrt{1-y^2}+\sqrt{1-z^2}\)
\(\le\frac{1-x^2+\frac{3}{4}}{\sqrt{3}}+\frac{1-y^2+\frac{3}{4}}{\sqrt{3}}+\frac{1-z^2+\frac{3}{4}}{\sqrt{3}}\)
\(=\frac{\frac{21}{4}-x^2-y^2-z^2}{\sqrt{3}}\)
+) \(1=xy+yz+xz+2xyz\le\frac{\left(x+y+z\right)^2}{3}+\frac{2\left(x+y+z\right)^3}{27}\)
Đặt \(a=x+y+z\), ta được \(2a^3+9a^2-27\ge0\Leftrightarrow\left(2a-3\right)\left(a+3\right)^2\ge0\Rightarrow a\ge\frac{3}{2}\)
+) \(A=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{\frac{9}{4}}{3}=\frac{3}{4}\)
+) \(P\ge\frac{\frac{21}{4}-A}{\sqrt{3}}=\frac{\frac{21}{4}-\frac{3}{4}}{\sqrt{3}}=\frac{9}{2\sqrt{3}}=\frac{3\sqrt{3}}{2}\)
Dấu = xảy ra khi x = y = z = 1/2
\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(xy+yz+zx\right)^2}{6x^2y^2z^2}\le\frac{\left(x^2+y^2+z^2\right)^2}{6x^2y^2z^2}=\frac{3}{2}\)
dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)
mình nhầm :) làm lại nhé
\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{6xyz}\le\frac{xy+yz+zx}{2xyz}\le\frac{x^2+y^2+z^2}{2xyz}=\frac{3}{2}\)
\(P+3=\frac{xy}{1+x+y}+1+\frac{yz}{1+y+z}+1+\frac{xz}{1+x+z}+1\)
\(\frac{xy}{1+x+y}+1=\frac{\left(x+1\right)\left(y+1\right)}{1+x+y}\)
\(P+3=\left(x+1\right)\left(y+1\right)\left(z+1\right)\left(\frac{1}{\left(z+1\right)\left(x+y+1\right)}+\frac{1}{\left(y+1\right)\left(x+z+1\right)}+\frac{1}{\left(x+1\right)\left(y+z+1\right)}\right)\)
\(P+3\ge\left(xyz+xy+xz+yz+1\right)\left(\frac{9}{xy+xz+x+y+z+1+xy+yz+x+y+z+1+xz+yz+x+y+z+1}\right)\)
dòng cuối cùng sai, sửa :
\(P+3\ge\left(xyz+xy+xz+yz+1\right)\left(\frac{9}{xy+xz+x+y+z+1+xy+yz+x+y+z+1+xz+yz+x+y+z+1}\right)\)
\(P+3\ge\left(3xyz+xy+xz+yz\right)\left(\frac{9}{2\left(3xyz+xy+xz+yz\right)}\right)=\frac{9}{2}\)
\(P\ge\frac{3}{2}\)
dấu "=" xảy ra <=> x=y=z=\(\frac{1+\sqrt{3}}{2}\)
Ta có:
P=\(\left(X^2+y^2+z^2+2xyz\right)-\left(X^2+y^2+z^2+4xyz-xy-yz-xz\right)\) xz)
= 1-\(\left(x^2+y^2+z^2+4xyz-xy-yz-xz\right)\)
=> P \(\le\)1
Vậy MaxP=1