\(x^2-2y=-1\); \(y^2+1=2z\) ;
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

Ta có: \(x^2-2y=-1\) \(\Leftrightarrow\) \(x^2-2y+1=0\) (1)

\(y^2+1=2z\) \(\Leftrightarrow y^2-2z+1=0\) (2)

\(2z^2=4x-2\) \(\Leftrightarrow2z^2-4x+2=0\)(3)

Cộng (1)(2)(3) theo vế:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\)

=> x-1=0; y-1=0; z-1=0

=>x=y=z

=>\(x^{2015}+y^{2015}+z^{2015}=1+1+1=3\)(đpcm)

13 tháng 8 2019

x^2-2y=-1=>x^2-2y+1=0

y^2+1=2z=>y^2-2z+1=0

2z^2=4x-2=>z^2-2x+1=0

cộng vế với vế của 3 pt

ta có x^2-2y+1+y^2-2z+1+z^2-2x+1=0

=>(x-1)^2+(y-1)^2+(z-1)^2=0

=>x-1=0; y-1=0; z-1=0;

=>x=y=z=1

=>x^2015+y^2015+z^2015=3

11 tháng 12 2015

đề bài sai nhé, 6x phảy là 6y
\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(-2x+y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Vì \(\left(-2x+y+z\right)^2\ge0\)
\(\left(y-3\right)^2\ge0\)
\(\left(z-5\right)^2\ge0\)
\(\Rightarrow\left(-2x+y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow y=3;z=5;x=4\)
\(\left(x-4\right)^{2015}+\left(y-4\right)^{2015}+\left(z-4\right)^{2015}=\left(4-4\right)^{2015}+\left(3-4\right)^{2015}+\left(5-4\right)^{2015}=0\)

3 tháng 8 2017

mình ko bít

3 tháng 8 2017

mà mình mới lớp 6 thui ahihi

30 tháng 10 2017

a) Ta có: \(\dfrac{2014}{\sqrt{2015}}+\dfrac{2015}{\sqrt{2014}}=\)

\(\dfrac{2015-1}{\sqrt{2015}}+\dfrac{2014+1}{\sqrt{2014}}=\sqrt{2015}-\dfrac{1}{\sqrt{2015}}+\sqrt{2014}+\dfrac{1}{\sqrt{2014}}\)

\(\left(\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}>0\right)\)\(>\sqrt{2014}+\sqrt{2015}\)

Vậy \(\dfrac{2014}{\sqrt{2015}}+\dfrac{2015}{\sqrt{2014}}>\sqrt{2014}+\sqrt{2015}\)

30 tháng 9 2016

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))

Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) . 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0

Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)

6 tháng 4 2019

Cm cái gì vậy bn. Thiếu đề òi

chứng minh \(\ge\)\(\sqrt{5}\)mk viết thiếu mất nha

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Đề không đủ dữ kiện để tính toán. Bạn xem lại nhé.

22 tháng 5 2020

ko lam thi thoi chui cl ay!!!

22 tháng 5 2020

đù , chuyện giề đang xảy ra vậy man