\(\frac{xy}{x+y}=\frac{12}{7},\frac{yz}{y+z}=-6,\frac{xz}{x+z}=-4\)-4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

Từ đề <=>\(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+zy}\Leftrightarrow xz=xy=zy\)

Có : \(zx=xy\Rightarrow y=z\left(\text{Vì }x\ne0\right),xy=zy\Rightarrow x=z\)

=> x=y=z 

tự tính M :]]

27 tháng 3 2019

bạn nào t-i-k sai cho tớ làm lại hộ ạ :)

15 tháng 6 2018

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1) 

=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)

a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] => 
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2) 
Thực hiện tương tự ta cũng có 
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3) 
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4) 
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.

4 tháng 7 2016

\(x;y;z\ne0\). Giả thiết của đề bài:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)

=> x = y = z

Do đó, M = 1.

5 tháng 8 2017

Ta có:\(\frac{xy}{x+y}=\frac{yz}{y+z}\Rightarrow xy\left(y+z\right)=yz\left(x+y\right)\Leftrightarrow xy^2+xyz=xyz+y^2z\Leftrightarrow xy^2=y^2z\Rightarrow x=z\)(1)

\(\frac{yz}{y+z}=\frac{xz}{x+z}\Rightarrow yz\left(x+z\right)=xz\left(y+z\right)\Leftrightarrow xyz+yz^2=xyz+xz^2\Leftrightarrow yz^2=xz^2\Rightarrow y=x\)(2)

Từ (1)và(2)suy ra:x=y=z

\(\Rightarrow x^2=xy,y^2=yz,z^2=xz\)

\(\Rightarrow M=\frac{xy+yz+xz}{xy+yz+xz}=1\)

Vậy M=1

6 tháng 8 2017

\(x^2=xy,y^2=yz,z^2=xz\)

là sao??

7 tháng 3 2021

Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)

=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)

=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))

=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)

Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)

28 tháng 10 2019

a, Đặt \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=7k\\z=5k\end{matrix}\right.\)

\(yz-xy-z^2=-72\)

\(\Rightarrow35k^2-28k^2-25k^2=-72\\ \Rightarrow k^2\left(35-28-25\right)=-72\\ k^2\cdot\left(-18\right)=-72\\ \Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)

Với k = 2

\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=7\cdot2=14\\z=5\cdot2=10\end{matrix}\right.\)

Với k = -2

\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot\left(-2\right)=-8\\y=7\cdot\left(-2\right)=-14\\z=5\cdot\left(-2\right)=-10\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\in\left\{\left(8;14;10\right);\left(-8;-14;-10\right)\right\}\)

b, Đặt \(\frac{x}{2}=\frac{y}{7}=\frac{z}{8}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=7k\\z=8k\end{matrix}\right.\)

\(2x^2+xy-xz=54\)

\(\Rightarrow8k^2+14k^2-16k^2=54\\ \Rightarrow k^2\left(8+14-16\right)=54\\ \Rightarrow k^2\cdot6=54\\ \Rightarrow k^2=9\\ \Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)

Với k = 3

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=7\cdot3=21\\z=8\cdot3=24\end{matrix}\right.\)

Với k = -3

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-3\right)=-6\\y=7\cdot\left(-3\right)=-21\\z=8\cdot\left(-3\right)=-24\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\in\left\{\left(6;21;24\right);\left(-6;-21;-24\right)\right\}\)

c, Đặt \(\frac{x+3}{5}=\frac{y-4}{3}=\frac{z-5}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k-3\\y=3k+4\\z=2k+5\end{matrix}\right.\)

\(2x-3y-z=-26\)

\(\Rightarrow2\left(5k-3\right)-3\left(3k+4\right)-\left(2k+5\right)=-26\\ \Rightarrow10k-6-9k-12-2k-5=-26\\ \Rightarrow-k=-3\\ \Rightarrow k=3\\ \Rightarrow\left\{{}\begin{matrix}x=5\cdot3-3=12\\y=3\cdot3+4=13\\z=2\cdot3+5=11\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(12;13;11\right)\)