\(x^3+y^3+z^3\le9\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử z lớn nhất trong 3 số x,y,z suy ra x+y+z\(\le\)3z  => z\(\ge\)1

Kết hợp với điều kiện đề bài =>\(1\le z\le2\)

Ta có \(x^3+y^3\le\left(x+y\right)^3=\left(3-z\right)^3\)

\(\Rightarrow x^3+y^3+z^3\le\left(3-z\right)^3+z^3=27-27z+9z^2=9\left(z-1\right)\left(z-2\right)+9\)

Do \(1\le z\le2\)nên \(9\left(z-1\right)\left(z-2\right)\le0\)

\(\Rightarrow x^3+y^3+z^3\le9\)

Dấu "=" xảy ra khi (x,y,z)=(0,1,2) và các hoán vị

14 tháng 7 2018

Bài 1 :

Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)

Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2017

Bài 1)

PT tương đương \((x^2+2y^2)^2=y^2-6y+16=(y-3)^2+7\)

\(\Leftrightarrow (x^2+2y^2-y+3)(x^2+2y^2+y-3)=7\)

Ta thấy \(x^2+2y^2-y+3=x^2+y^2+(y-\frac{1}{2})^2+\frac{11}{4}>2\)

Do đó \(\left\{\begin{matrix}x^2+2y^2-y+3=7\\x^2+2y^2+y-3=1\end{matrix}\right.\Rightarrow6-2y=6\Rightarrow y=0\)

\(\Rightarrow x^2=4\Rightarrow x=\pm 2\)

Vậy \((x,y)=(2,0),(-2,0)\)

Bài 2)

PT tương đương \(5x^2+x(5y-7)+(5y^2+14y)=0\)

Để phương trình có nghiệm thì \(\Delta =(5y-7)^2-20(5y^2+14y)\geq 0\)

\(\Leftrightarrow -75y^2-350y+49\geq 0\)

Giải BPT trên thu được \(\frac{-35-14\sqrt{7}}{15}\leq y\leq \frac{-35+14\sqrt{7}}{15}\)

\(\Rightarrow -4\le y\le 0\). Do đó \(y\in \left\{-4,-3,-2,-1,0\right\}\)

Kết hợp với \(\Delta\) là số chính phương nên \(y=-1,0\) tương ứng với \(x=3,x=0\)

Vậy \((x,y)=(3,-1),(0,0)\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2017

Câu 3)

Ta có \(A=\frac{x}{z}+\frac{z}{y}+3y=\frac{x}{z}+\frac{z}{y}+y(x+y+z)\)

Áp dụng bất đẳng thức AM-GM:

\(\left\{\begin{matrix} \frac{z}{y}+yz\geq 2z\\ z\leq y\Rightarrow \frac{x}{z}+xy\geq\frac{x}{y}+xy\geq 2x \end{matrix}\right.\)

\(\Rightarrow A\geq 2(x+z)+y^2=2(3-y)+y^2=(y-1)^2+5\geq 5\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2019

Lời giải:

Ta xét hiệu sau:

\(x^3+y^3-xy(x+y)=x^3-x^2y-(xy^2-y^3)\)

\(=x^2(x-y)-y^2(x-y)=(x^2-y^2)(x-y)=(x-y)^2(x+y)\geq 0, \forall x,y>0\)

\(\Rightarrow x^3+y^3\geq xy(x+y)(*)\)

\(\Rightarrow x^3+y^3+xy\geq xy(x+y+1)\)

\(\Rightarrow \frac{xy}{x^3+y^3+xy}\leq \frac{xy}{xy(x+y+1)}=\frac{1}{x+y+1}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế, suy ra:

\(\text{VT}\leq \underbrace{\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}}_{M}(1)\)

Vì $xyz=1$ nên tồn tại $a,b,c>0$ sao cho \((x,y,z)=(\frac{a^2}{bc}, \frac{b^2}{ac}, \frac{c^2}{ab})\)

Khi đó:

\(M=\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\)

\(\leq \frac{abc}{ab(a+b)+abc}+\frac{abc}{bc(b+c)+abc}+\frac{abc}{ca(c+a)+abc}\) (áp dụng công thức $(*)$)

hay \(M\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=\frac{a+b+c}{a+b+c}=1(2)\)

Từ \((1);(2)\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$

28 tháng 2 2019

Bài của chị Akai đoạn đầu hơi phức tạp(em nghĩ thế).

Ta có:

\(\left(x-y\right)^2\ge0\) với \(\forall x,y\)

\(\Rightarrow x^2+y^2-xy\ge0\) với \(\forall x,y\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)với\(\forall x,y\)

\(\Rightarrow x^3+y^3\ge xy\left(x+y\right)\) với \(\forall x,y\)

Rồi giải tiếp như chị ấy.

26 tháng 5 2019

áp dụng bất đẳng thức Cauchy ta có :

\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=|x-1|=1-x.\)

\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=|y-1|=1-y.\)

\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=|z-1|=1-z.\)

\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z.\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}.\)

Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}.\)

26 tháng 5 2019

1. Cho 3 số thực x,y,z thỏa mãn x+y+z=xyz và x,y,z>1

Tìm GTNN của P= x-1/y+y-1/x+ x-1/x2

               Giải

Từ gt⇒1xy+1yz+1zx=1⇒1xy+1yz+1zx=1

Theo AM-GM ta có:

P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥√3∑1xy+∑1xy−2=√3−1P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥3∑1xy+∑1xy−2=3−1

Dấu = xảy ra⇔x=y=z=1√3

P/S: ĐỀ BÀI TƯƠNG TỰ NÊN BẠN TỰ LÀM NHA !! CHÚC HOK TỐT!

9 tháng 2 2019

\(VT=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)  

\(\le3-\frac{9}{x+y+z+3}=3-\frac{9}{1+3}=\frac{3}{4}^{\left(đpcm\right)}\) (Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\))

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x+1}=\frac{1}{y+1}=\frac{1}{z+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=1\\x+1=y+1=z+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\x=y=z\end{cases}}\Leftrightarrow x=y=z=\frac{1}{3}\)

9 tháng 2 2019

Chứng minh BĐT: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) (a,b,c > 0)

Thật vậy,theo BĐT AM-GM (Cô si) ta có: \(VT\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}^{\left(đpcm\right)}\)

30 tháng 4 2020

Ta có :

\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)

\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)

không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)

Khi đó : A = x - y + y - z + x - z = 2x - 2z

vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)

\(\Rightarrow A\le6\)

Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các  hoán vị