Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)
Theo BĐT Cô - Si dưới dạng engel ta có :
\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)
Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)
Bài 1)
PT tương đương \((x^2+2y^2)^2=y^2-6y+16=(y-3)^2+7\)
\(\Leftrightarrow (x^2+2y^2-y+3)(x^2+2y^2+y-3)=7\)
Ta thấy \(x^2+2y^2-y+3=x^2+y^2+(y-\frac{1}{2})^2+\frac{11}{4}>2\)
Do đó \(\left\{\begin{matrix}x^2+2y^2-y+3=7\\x^2+2y^2+y-3=1\end{matrix}\right.\Rightarrow6-2y=6\Rightarrow y=0\)
\(\Rightarrow x^2=4\Rightarrow x=\pm 2\)
Vậy \((x,y)=(2,0),(-2,0)\)
Bài 2)
PT tương đương \(5x^2+x(5y-7)+(5y^2+14y)=0\)
Để phương trình có nghiệm thì \(\Delta =(5y-7)^2-20(5y^2+14y)\geq 0\)
\(\Leftrightarrow -75y^2-350y+49\geq 0\)
Giải BPT trên thu được \(\frac{-35-14\sqrt{7}}{15}\leq y\leq \frac{-35+14\sqrt{7}}{15}\)
\(\Rightarrow -4\le y\le 0\). Do đó \(y\in \left\{-4,-3,-2,-1,0\right\}\)
Kết hợp với \(\Delta\) là số chính phương nên \(y=-1,0\) tương ứng với \(x=3,x=0\)
Vậy \((x,y)=(3,-1),(0,0)\)
Câu 3)
Ta có \(A=\frac{x}{z}+\frac{z}{y}+3y=\frac{x}{z}+\frac{z}{y}+y(x+y+z)\)
Áp dụng bất đẳng thức AM-GM:
\(\left\{\begin{matrix} \frac{z}{y}+yz\geq 2z\\ z\leq y\Rightarrow \frac{x}{z}+xy\geq\frac{x}{y}+xy\geq 2x \end{matrix}\right.\)
\(\Rightarrow A\geq 2(x+z)+y^2=2(3-y)+y^2=(y-1)^2+5\geq 5\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(x=y=z=1\)
Lời giải:
Ta xét hiệu sau:
\(x^3+y^3-xy(x+y)=x^3-x^2y-(xy^2-y^3)\)
\(=x^2(x-y)-y^2(x-y)=(x^2-y^2)(x-y)=(x-y)^2(x+y)\geq 0, \forall x,y>0\)
\(\Rightarrow x^3+y^3\geq xy(x+y)(*)\)
\(\Rightarrow x^3+y^3+xy\geq xy(x+y+1)\)
\(\Rightarrow \frac{xy}{x^3+y^3+xy}\leq \frac{xy}{xy(x+y+1)}=\frac{1}{x+y+1}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế, suy ra:
\(\text{VT}\leq \underbrace{\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}}_{M}(1)\)
Vì $xyz=1$ nên tồn tại $a,b,c>0$ sao cho \((x,y,z)=(\frac{a^2}{bc}, \frac{b^2}{ac}, \frac{c^2}{ab})\)
Khi đó:
\(M=\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\)
\(\leq \frac{abc}{ab(a+b)+abc}+\frac{abc}{bc(b+c)+abc}+\frac{abc}{ca(c+a)+abc}\) (áp dụng công thức $(*)$)
hay \(M\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=\frac{a+b+c}{a+b+c}=1(2)\)
Từ \((1);(2)\Rightarrow \text{VT}\leq 1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$
Bài của chị Akai đoạn đầu hơi phức tạp(em nghĩ thế).
Ta có:
\(\left(x-y\right)^2\ge0\) với \(\forall x,y\)
\(\Rightarrow x^2+y^2-xy\ge0\) với \(\forall x,y\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)với\(\forall x,y\)
\(\Rightarrow x^3+y^3\ge xy\left(x+y\right)\) với \(\forall x,y\)
Rồi giải tiếp như chị ấy.
áp dụng bất đẳng thức Cauchy ta có :
\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=|x-1|=1-x.\)
\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=|y-1|=1-y.\)
\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=|z-1|=1-z.\)
\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z.\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}.\)
Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}.\)
1. Cho 3 số thực x,y,z thỏa mãn x+y+z=xyz và x,y,z>1
Tìm GTNN của P= x-1/y2 +y-1/x2 + x-1/x2
Giải
Từ gt⇒1xy+1yz+1zx=1⇒1xy+1yz+1zx=1
Theo AM-GM ta có:
P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥√3∑1xy+∑1xy−2=√3−1P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥3∑1xy+∑1xy−2=3−1
Dấu = xảy ra⇔x=y=z=1√3
P/S: ĐỀ BÀI TƯƠNG TỰ NÊN BẠN TỰ LÀM NHA !! CHÚC HOK TỐT!
\(VT=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\le3-\frac{9}{x+y+z+3}=3-\frac{9}{1+3}=\frac{3}{4}^{\left(đpcm\right)}\) (Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\))
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x+1}=\frac{1}{y+1}=\frac{1}{z+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=1\\x+1=y+1=z+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\x=y=z\end{cases}}\Leftrightarrow x=y=z=\frac{1}{3}\)
Ta có :
\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)
không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)
Khi đó : A = x - y + y - z + x - z = 2x - 2z
vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)
\(\Rightarrow A\le6\)
Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các hoán vị
Giả sử z lớn nhất trong 3 số x,y,z suy ra x+y+z\(\le\)3z => z\(\ge\)1
Kết hợp với điều kiện đề bài =>\(1\le z\le2\)
Ta có \(x^3+y^3\le\left(x+y\right)^3=\left(3-z\right)^3\)
\(\Rightarrow x^3+y^3+z^3\le\left(3-z\right)^3+z^3=27-27z+9z^2=9\left(z-1\right)\left(z-2\right)+9\)
Do \(1\le z\le2\)nên \(9\left(z-1\right)\left(z-2\right)\le0\)
\(\Rightarrow x^3+y^3+z^3\le9\)
Dấu "=" xảy ra khi (x,y,z)=(0,1,2) và các hoán vị