Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta cần chứng minh biểu thức:
\(A = 3 x^{n} \left(\right. z - y \left.\right) + 3 y^{n} \left(\right. x - z \left.\right) + 3 z^{n} \left(\right. y - x \left.\right)\)
chia hết cho:
\(B = \left(\right. x - y \left.\right)^{3} + \left(\right. y - z \left.\right)^{3} + \left(\right. z - x \left.\right)^{3}\)
với \(x , y , z\) đôi một khác nhau, và \(n \in \mathbb{Z} , n > 1\).
Bước 1: Phân tích mẫu số B
Ta xét:
\(B = \left(\right. x - y \left.\right)^{3} + \left(\right. y - z \left.\right)^{3} + \left(\right. z - x \left.\right)^{3}\)
Sử dụng hằng đẳng thức:
\(a^{3} + b^{3} + c^{3} = 3 a b c \text{khi}\&\text{nbsp}; a + b + c = 0\)
Đặt:
- \(a = x - y\)
- \(b = y - z\)
- \(c = z - x\)
Khi đó:
\(a + b + c = \left(\right. x - y \left.\right) + \left(\right. y - z \left.\right) + \left(\right. z - x \left.\right) = 0 \Rightarrow a^{3} + b^{3} + c^{3} = 3 a b c \Rightarrow B = 3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)
⇒ Kết luận:
\(B = 3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)
Bước 2: Phân tích tử số A
Xét:
\(A = 3 x^{n} \left(\right. z - y \left.\right) + 3 y^{n} \left(\right. x - z \left.\right) + 3 z^{n} \left(\right. y - x \left.\right)\)
Rút 3 ra ngoài:
\(A = 3 \left[\right. x^{n} \left(\right. z - y \left.\right) + y^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. y - x \left.\right) \left]\right.\)
Gọi:
\(A^{'} = x^{n} \left(\right. z - y \left.\right) + y^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. y - x \left.\right)\)
Mục tiêu: Chứng minh \(A^{'}\) chia hết cho \(\left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)
Bước 3: Ý tưởng dùng đối xứng và định lý đa thức
Đặt \(f \left(\right. x , y , z \left.\right) = x^{n} \left(\right. z - y \left.\right) + y^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. y - x \left.\right)\)
Tính đối xứng:
- Nếu hoán vị các biến, biểu thức \(f \left(\right. x , y , z \left.\right)\) chỉ đổi dấu, không thay giá trị tuyệt đối. Nên \(f \left(\right. x , y , z \left.\right)\) là một đa thức phản đối xứng.
Ta sẽ chứng minh:
\(\left(\right. x - y \left.\right) , \left(\right. y - z \left.\right) , \left(\right. z - x \left.\right) \mid f \left(\right. x , y , z \left.\right)\)
Nếu \(x = y \Rightarrow f \left(\right. x , x , z \left.\right) = x^{n} \left(\right. z - x \left.\right) + x^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. x - x \left.\right) = x^{n} \left(\right. z - x + x - z \left.\right) + 0 = 0\)
⇒ \(x - y \mid f \left(\right. x , y , z \left.\right)\)
Tương tự:
- \(y = z \Rightarrow f \left(\right. x , y , y \left.\right) = 0 \Rightarrow y - z \mid f\)
- \(z = x \Rightarrow f \left(\right. x , y , x \left.\right) = 0 \Rightarrow z - x \mid f\)
⇒ Vậy: \(\left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right) \mid A^{'}\)
⇒ \(3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right) \mid A\)
Mà \(B = 3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)
✅ Kết luận:
\(A \&\text{nbsp};\text{chia}\&\text{nbsp};\text{h} \overset{ˊ}{\hat{\text{e}}} \text{t}\&\text{nbsp};\text{cho}\&\text{nbsp}; B\)
hay:
\(3 x^{n} \left(\right. z - y \left.\right) + 3 y^{n} \left(\right. x - z \left.\right) + 3 z^{n} \left(\right. y - x \left.\right) \&\text{nbsp};\text{chia}\&\text{nbsp};\text{h} \overset{ˊ}{\hat{\text{e}}} \text{t}\&\text{nbsp};\text{cho}\&\text{nbsp}; \left(\right. x - y \left.\right)^{3} + \left(\right. y - z \left.\right)^{3} + \left(\right. z - x \left.\right)^{3}\)
với mọi số nguyên \(n > 1\), và \(x , y , z\) đôi một khác nhau.
Nếu bạn cần chứng minh bằng phương pháp khác (ví dụ: dùng định lý đồng dư, đa thức hoặc kiểm tra cụ thể), mình có thể hỗ trợ tiếp.

Đặt y+z-x=a
x+z-y=b
x+y-z=c
Ta thấy a+b+c=y+z-x+x+z-y+x+y-z=x+y+z
Ta có: \(P=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+c^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2-a^3-b^3-c^3\)
\(=3a^2b+3ab^2+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)
\(=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(=3\cdot2z\cdot2y\cdot2x\)
\(=24xyz⋮24\)
Vậy P chia hết cho 24

Có: \(x+y+z⋮6\)
\(\Rightarrow x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=6k-z\\y+z=6k-x\\z+x=6k-y\end{cases}}\)
\(M=\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)
\(\Leftrightarrow M=x^2y+y^2z+z^2y+xy^2+xz^2+x^2z-2xyz-2xyz\)
\(\Leftrightarrow M=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(z+x\right)\)
\(\Leftrightarrow M=xy\left(6k-z\right)+yz\left(6k-x\right)+xz\left(6k-y\right)\)
\(\Leftrightarrow M=6k\left(xy+yz+zx\right)-3xyz\)
Ta có:\(x+y+z=6k\left(k\in Z\right)\)
\(\Rightarrow\)x+y+z là số chẵn.
\(\Rightarrow\)trong 3 số x;y;z có ít nhất 1 số chẵn
\(\Rightarrow xyz⋮2\)
\(\Rightarrow3xyz⋮6\)
\(M=6k\left(xy+yz+zx\right)-3xyz⋮6\)( vì \(6k\left(xy+yz+zx\right)⋮6\))
đpcm

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Một bài toán "lừa" người ta:
Đặt \(a=x-y,b=y-z,c=z-x\Rightarrow a+b+c=0\).
Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Trong trường hợp này thì \(a+b+c=0\) nên suy ra đpcm.