\(\ne\) -1. Tính giá trị của \(A=\frac{xy+2x+1}{xy+x+y+1}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

\(\frac{x^2-yz}{yz}+1+\frac{y^2-zx}{zx}+1+\frac{z^2-xy}{xy}+1=3\Leftrightarrow\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=3\)

\(\Leftrightarrow\frac{1}{xyz}\left(x^3+y^3+z^3\right)=3\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Tới đây bạn thay vào nhé :)

12 tháng 1 2018

Ta có

\(\frac{xy+1}{y}=\frac{yz+1}{z}=>x+\frac{1}{y}=y+\frac{1}{z}=>x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\left(1\right)\)

\(\frac{yz+1}{z}=\frac{zx+1}{x}=>y+\frac{1}{z}=z+\frac{1}{x}=>y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\left(2\right)\)

\(\frac{zx+1}{x}=\frac{xy+1}{y}=>z+\frac{1}{x}=x+\frac{1}{y}=>z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\left(3\right)\)

Nhân từng vế (1),(2),(3) ta có:

\(\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(y-z\right)\left(z-x\right)\left(x-y\right)}{x^2y^2z^2}\)

<=>\(x^2y^2z^2\left(x-y\right)\left(y-z\right)\left(z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)  

<=>\(\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x^2y^2z^2-1\right)=0\)

=> (x-y)(y-z)(z-x)=0 hoặc x2y2z2-1=0

• (x-y)(y-z)(z-x)=0 => x=y=z

• x2y2z2-1=0 => x2y2z2=1

Vậy x=y=z hoặc x2y2z2=1

6 tháng 9 2018

\(M=\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)

    \(=\frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\)

    \(=\frac{\left(xy+yz+zx\right)^2-2x^2yz-2xyz^2-2x^2yz}{xyz}\)

    \(=\frac{0-2xyz\left(x+y+z\right)}{xyz}\)

    \(=0-2\left(x+y+z\right)\)

    \(=0-2.\left(-1\right)=0-\left(-2\right)=2\)

Chúc bạn học tốt.