Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+xz=0\)
\(A=\frac{yz}{x^2+yz+-xy-xz}+\frac{xz}{y^2+zx-xy-yz}+\frac{xy}{z^2+xy-xz-yz}\)
\(A=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-z\right)\left(y-x\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)
\(A=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-z\right)\left(x-y\right)\left(y-z\right)}\)
\(A=\frac{\left(z-x\right)\left(y-z\right)\left(y-x\right)}{\left(x-z\right)\left(x-y\right)\left(y-z\right)}=1\)
Lời giải:
\(P=\sum \frac{1}{2xy^2+1}=\sum (1-\frac{2xy^2}{2xy^2+1})\)
\(=3-2\sum\frac{xy^2}{2xy^2+1}\geq 3-2\sum \frac{xy^2}{3\sqrt[3]{x^2y^4}}\) theo BĐT AM-GM.
\(=3-\frac{2}{3}\sum \sqrt[3]{xy^2}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt[3]{xy^2}\leq \frac{x+y+y}{3}\Rightarrow \sum \sqrt[3]{xy^2}\leq \frac{3(x+y+z)}{3}=3\)
$\Rightarrow P\geq 3-\frac{2}{3}.3=1$
Vậy $P_{\min}=1$. Giá trị này đạt tại $x=y=z=1$
Áp dụng BĐT AM-GM ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{y^2\left(x+1\right)}{y^2+1}\ge x+1-\dfrac{y\left(x+1\right)}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{z\left(y+1\right)}{2};\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{x\left(z+1\right)}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(Q\ge\left(x+y+z+3\right)-\dfrac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)
\(=6-\dfrac{xy+yz+xz+x+y+z}{2}\)
\(\ge6-\dfrac{\dfrac{\left(x+y+z\right)^2}{3}+3}{2}=6-3=3\)
Đẳng thức xảy ra khi \(x=y=z=1\)