\(x^2+y^2+z^2=3\)

CMR : P=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

thi cấp tỉnh mà có bài là quá ngon rồi !

Áp dụng BĐT \((a+b+c)^2 \geq 3(ab+bc+ca)\) ta có:

\(\left(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\right)^2 \geq 3(x^2+y^2+z^2)=9\)

\(\Leftrightarrow \dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x} \geq 3\)

Đẳng thức xảy ra khi \(x=y=z=1\)

4 tháng 4 2017

ukm bài BĐT cũng khá dễ chỉ có mấy câu hình là khoai :D

11 tháng 6 2017

bạn ơi sai đề

\(\sqrt{x-10}\ge0\) ( với x >= 10 ).

11 tháng 6 2017

bạn ơi sai đề rồi ; căn bật sao âm được

17 tháng 5 2017

Xét phương trình hoành độ giao điểm của (d) và (p):

\(x^2=x+m-1\)

\(\Leftrightarrow x^2-x-m+1=0\left(1\right)\)

Xét phương trình (1) có:

\(\Delta=\left(-1\right)^2-4\left(-m+1\right)=4m-3\)

Để (d) cắt (p) tại 2 điểm thì phương trình (1) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\Leftrightarrow4m-3>0\Leftrightarrow m>\dfrac{3}{4}\)

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1.x_2=1-m\end{matrix}\right.\)

Theo đề bài ta có:

\(4\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+3=0\)

\(\Leftrightarrow\dfrac{4\left(x_1+x_2\right)}{x_1x_2}-x_1x_2+3=0\)

\(\Leftrightarrow\dfrac{4}{1-m}-\left(1-m\right)+3=0\left(m\ne1\right)\)

\(\Leftrightarrow4-\left(1-m\right)^2+3\left(1-m\right)=0\)

\(\Leftrightarrow m^2+m-6=0\)

\(\Leftrightarrow\left(m-2\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(tm\right)\\m=-3\left(ktm\right)\end{matrix}\right.\)

Vậy để (d)cắt (p) tại 2 điểm có hoành độ \(x_1,x_2\) thỏa mãn \(4\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+3=0\) thì m=2

30 tháng 9 2017

Rút gọn biểu thức chứa căn bậc hai

30 tháng 9 2017

Rút gọn biểu thức chứa căn bậc hai

11 tháng 7 2017

a) điều kiện : \(x>0;x\ne4\)

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}+1\right)^2}\Leftrightarrow\sqrt{x}=\sqrt{3}+1\) \(\left(x>0\right)\)

thay vào P ta có \(P=\dfrac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1-2\right)}=\dfrac{\sqrt{3}+3}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\dfrac{\sqrt{3}+3}{2}\)

\(P>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\)

ta có : \(\sqrt{x}+2>0\)\(\sqrt{x}>0\) \(\left(x>0\right)\)

\(\Rightarrow p>0\) thì \(\sqrt{x}-2>0\Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)

vậy \(x>4\) thì P > 0

11 tháng 7 2017

câu : a ; b ; c đầy đủ rồi nha quênh gi câu : a ; b ; c hehe

\(=\sqrt{2}\left(\dfrac{2+\sqrt{5}}{2+\sqrt{5}+1}+\dfrac{2-\sqrt{5}}{2-\sqrt{5}+1}\right)\)

\(=\sqrt{2}\left(\dfrac{\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\right)\)

\(=\sqrt{2}\cdot\dfrac{6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5}{4}\)

\(=\sqrt{2}\cdot\dfrac{2}{4}=\dfrac{\sqrt{2}}{2}\)

13 tháng 5 2017

\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)

(AM-GM)

do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)

Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)

13 tháng 5 2017

u cha ông cx giỏi AM-GM z !!

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6\right)^2=\left(1-x\right)^2\\-3< =x< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6+x-1\right)\left(2x+6+1-x\right)=0\\-3< =x< =1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x+5\right)\left(x+7\right)=0\\-3< =x< =1\end{matrix}\right.\Leftrightarrow x=-\dfrac{5}{3}\)

b: \(\Leftrightarrow2\cdot3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=2x\)

\(\Leftrightarrow4\sqrt{x-3}=2x\)

\(\Leftrightarrow2\sqrt{x-3}=x\)

\(\Leftrightarrow\sqrt{4x-12}=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=3\\x^2=4x-12\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

19 tháng 3 2017

m=-5/4 đó bạn

19 tháng 3 2017

bạn giải như thế nào vậy

20 tháng 10 2017

\(\sqrt{x-2\sqrt{x-1}}=2\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\Leftrightarrow\left|\sqrt{x-1}-1\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=2\\\sqrt{x-1}-1=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=10\\\sqrt{x-1}=-1\left(vn\right)\end{matrix}\right.\)

Kl: x=10

**khỏi cần đk**

20 tháng 10 2017

á quên, đk x >/ 1