Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, cho \(x=y=z=\frac{1}{3}\) thì \(VT=6\) ; \(VP>19\)
nhầm mk giải lại
vì x;y;z là 3 số dương \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{9}{x+y+z}\)(bđt cauchy schwarz dạng engel)
dấu = xảy ra khi x=y=z=2
mà x+y+z<=6\(\Rightarrow\frac{9}{x+y+z}>=\frac{9}{6}=\frac{3}{2}\)\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}.=\frac{3}{2}\)
vì x;y;z là 3 số dương \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\)(bđt caucht schwarz dạng engel)
dấu = xảy ra khi \(x=y=z=\frac{6}{3}=2\)
vậy \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{3}{2}\)
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{y}-\frac{1}{z}\)=>\(\frac{1}{x}+\frac{1}{z}=\frac{2}{y}\)=>\(y=\frac{2xz}{x+z}\)
thay y vào được \(\frac{x+y}{2x-y}+\frac{y+z}{2z-y}=\frac{x+3z}{2x}+\frac{z+3x}{2z}\)
\(=\frac{2xz+3\left(x^2+z^2\right)}{2xz}>\)hoặc \(=\)\(\frac{2xz+6xz}{2xz}=4\)
Với n=1 =>A=2; B=2 ( Đúng )
Với n=2 =>A=3 ; B=3 ( Đúng)
Với n>2 .Giả sử B là hợp số
=> B=ab( a;b thuộc N , a;b lớn hơn hoặc =2)
=> n+1=ab=>n=ab-1> hoặc =2a-1>a
Nên A=n!+1= ( ab - 1 )! +1= ( ab-1 ) ( ab-2 )
=> A chia a dư 1
mà Achia hết cho B, B chia hết cho a ( Vô lí )
=> B là số nguyên tố
Ta có:
\(\frac{1}{x^2+x}+\frac{x+1}{4x}\ge\frac{1}{x}\)
\(\Rightarrow\frac{1}{x^2+x}\ge\frac{3}{4x}-\frac{1}{4}\left(1\right)\)
Tương tự ta có:
\(\hept{\begin{cases}\frac{1}{y^2+y}\ge\frac{3}{4y}-\frac{1}{4}\left(2\right)\\\frac{1}{z^2+z}\ge\frac{3}{4z}-\frac{1}{4}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được:
\(P=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{3}{4}\)
\(\ge\frac{3}{4}.\frac{\left(1+1+1\right)^2}{x+y+z}-\frac{3}{4}=\frac{3}{2}\)
Vậy GTNN là \(P=\frac{3}{2}\)đạt được khi \(x=y=z=1\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=9\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\Rightarrow x^2+y^2+z^2\ge3\)
Lại áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{\left(1+1+1\right)^2}{x^2+x+y^2+y+z^2+z}\)
\(=\frac{\left(1+1+1\right)^2}{\left(x^2+y^2+z^2\right)+\left(x+y+z\right)}\ge\frac{\left(1+1+1\right)^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Áp dụng bđt AM - GM cho 3 số dương x;y;z ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow1\ge3\sqrt[3]{xyz}\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{xyz}\Rightarrow\frac{1}{27}\ge xyz\)
Ta có :\(A=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)=\left(1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}\right)\left(1+\frac{1}{z}\right)\)
\(=1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}+\frac{1}{z}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xyz}\)
\(=1+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{x+y+z}{xyz}+\frac{1}{xyz}\)
\(=1+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{2}{xyz}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng Engel ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}=9\)
Mà \(xyz\le\frac{1}{27}\)\(\Rightarrow A\ge1+9+\frac{2}{\frac{1}{27}}=64\)(đpcm)
Đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\)\(\left(a,b,c>0\right)\)\(\Rightarrow\)\(a+b+c\ge3\sqrt[3]{2^{x+y+z}}=3\sqrt[3]{2^6}=12\)
bđt đề bài \(\Leftrightarrow\)\(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)\)
Dễ dàng chứng minh bđt trên với bđt phụ \(a^3-4a^2\ge16a-64\)\(\Leftrightarrow\)\(\left(a-4\right)^2\left(a+4\right)\ge0\) luon dung
\(\Rightarrow\)\(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)+16\left(a+b+c\right)-192\ge4\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(x=y=z=2\)
Đặt : \(a=2^x;b=2^y;c=2^z\)
Khi đó : \(a,b,c>0;abc=2^{x+y+z}=64\)
Ta cần c/m : \(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^3+32-6a^2=\left(a-4\right)^2\left(a+2\right)\)
Theo đó, ta cần sử dụng giả thiết : \(a>0\), suy ra : \(a^3+32\ge6a^2\)
Thiết lập các bđt tương tự cho b và c và cộng theo vế các bđt tìm được, ta có :
\(a^3+b^3+c^3+96\ge6\left(a^2+b^2+c^2\right)\)
Ta cần c/m thêm : \(6\left(a^2+b^2+c^2\right)\ge4\left(a^2+b^2+c^2\right)+96\)
hay : \(2\left(a^2+b^2+c^2\right)\ge2.3\sqrt[3]{a^2b^2c^2}=6\sqrt[3]{4096}=96\)
\(\Rightarrowđpcm\)
mik làm cách khác,mấy bạn cho điểm nhá!
Sai đề:x+y+z=6
Đặt\(a=2^x,b=2^y,c=2^z\)
\(\Rightarrow abc=2^{x+y+z}=64\)
Áp dụng bất đẳng thức AM-GM,ta được:
\(3\sqrt[3]{abc}\le a+b+c\)
Ta có:\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Hay \(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Thật vậy:
Áp dụng bất đẳng thức AM-GM một lần nữa,ta được:
\(a^3+a^3+b^3\ge3a^2b\)
\(a^3+a^3+c^3\ge3a^2c\)
\(a^3+b^3+b^3\ge3b^2a\)
\(a^3+c^3+c^3\ge3c^2a\)
\(b^3+b^3+c^3\ge3b^2c\)
\(b^3+c^3+c^3\ge3c^2b\)
Cộng vế theo vế của các bất đẳng thức,ta được:
\(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Dấu "="xẩy ra khi và chỉ khi:\(a=b=c\)