K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

Bài này thì có 2 cách Làm cách cồng kềnh nhất vậy :))

\(M=x^3\left(\frac{1}{xy+9}+\frac{1}{xz+9}\right)+y^3\left(\frac{1}{xy+9}+\frac{1}{yz+9}\right)+z^3\left(\frac{1}{yz+9}+\frac{1}{xz+9}\right)\)

C-S ; ta được : \(\frac{1}{xy+9}+\frac{1}{xz+9}\ge\frac{4}{x\left(y+z\right)+18}=\frac{4}{x\left(9-x\right)+18}=\frac{4}{3x+27-\left(x-3\right)^2}\ge\frac{4}{3x+27}\)

Suy ra : \(M\ge\frac{4}{3}\) . sigma \(\frac{x^3}{x+9}\) 

Tiếp tục AD C-S ; ta được : \(\frac{x^3}{x+9}+\frac{3}{16}\left(x+9\right)+\frac{9}{4}\ge\frac{9}{4}x\Rightarrow\frac{x^3}{x+9}\ge\frac{33}{16}x-\frac{63}{16}\)

=> sig ma \(\frac{x^3}{x+9}\ge\frac{33}{16}\left(x+y+z\right)-\frac{63}{16}.3=\frac{27}{4}\)

Suy ra : M \(\ge\frac{4}{3}.\frac{27}{4}=9\)

" = " <=> x = y = z = 3

Xong film 

3 tháng 10 2021

Ủa làm đề  hay s vậy ? Toàn mấy câu thi HSG

10 tháng 10 2019

Theo giả thiết \(\sqrt{\frac{yz}{x}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{xy}{z}}=3\)

\(\Rightarrow\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}+2x+2y+2z=9\)

Mặt khác , ta có BĐT phụ : \(\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}\ge x+y+z\)

\(\Rightarrow9\ge3\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z\le3\)

Áp dụng BĐT Cauchy Shwarz \(\Rightarrow\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\le9\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)

Ta có : \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{2007}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\ge2.\sqrt{9}+\frac{2007}{3}=675\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Chúc bạn học tốt !!!

8 tháng 2 2017

Câu hỏi của Ngô Hoàng Phúc - Toán lớp 10 | Học trực tuyến

9 tháng 9 2018

\(P=\frac{y^3}{x^2+xy+y^2}+\frac{z^3}{y^2+zx+z^2}+\frac{x^3}{z^2+zx+x^2}\) 

\(\Leftrightarrow P=\frac{y^4}{x^2y+xy^2+y^3}+\frac{z^4}{y^2z+z^2x+z^3}+\frac{x^4}{z^2x+zx^2+x^3}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3+y^3+z^3+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y}\)

\(\Leftrightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{x+y+z}\ge3\) 

Dấu "=" khi x=y=z=3

27 tháng 2 2020

\(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)

\(\ge13\)

Dấu "=" xảy ra tại x=2;y=3;z=4

27 tháng 2 2020

Để ý điểm rơi mà làm bạn :)

28 tháng 11 2019

\(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1^2}{xy}+\frac{1^2}{yz}+\frac{1^2}{xz}\ge\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)

\(=\frac{9}{xy+yz+zx}\ge\frac{9}{x^2+y^2+z^2}\ge\frac{9}{6}=\frac{3}{2}\).

Dấu " = " xảy ra <=> x = y =z = \(\sqrt{2}\).