\(x^2+y^2+z^2\le12\) 

Tìm GTLN của 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
23 tháng 5 2021

Ta có: \(xy+yz+zx\le x^2+y^2+z^2\)

Dấu \(=\)khi \(x=y=z\).

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\le3\left(x^2+y^2+z^2\right)\)

\(\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\le\sqrt{36}=6\).

Suy ra \(P\le6+12=18\)

Dấu \(=\)khi \(x=y=z=2\)

2 tháng 7 2017

Vì  \(x+y+z=2\)

Ta có  \(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x^2+xy\right)+\left(xz+yz\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{x+y+x+z}{2}=\frac{2x+y+z}{2}\)

Tương tự  \(\sqrt{2y+zx}\le\frac{x+2y+z}{2}\)  và  \(\sqrt{2z+xy}\le\frac{x+y+2z}{2}\)

Do đó  \(P\le\frac{2x+y+z}{2}+\frac{x+2y+z}{2}+\frac{x+y+2z}{2}=\frac{4\left(x+y+z\right)}{2}=\frac{4.2}{2}=4\)

Vậy  \(P\le4\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x+y=x+z\\y+x=y+z\\z+x=z+y\end{cases}}\)  và x+y+z=2   \(\Leftrightarrow\)  \(x=y=z=\frac{2}{3}\)

19 tháng 5 2018

GTLN hay GTNN bạn ơi ;(

19 tháng 5 2018

GTNN bạn

9 tháng 5 2016

Mình quên yêu cầu bài 2: Tìm GTNN GTLN của x.

9 tháng 5 2016

yêu cầu bài 2 Tìm giá trị min max của x

9 tháng 11 2018

make friends with yourself ^^

8 tháng 9 2017

Áp dụng bđt Svacsơ ta có :

\(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{x^2}{x+z}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

ta lại có : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)( bunhiacopxki )

\(\Rightarrow x^2+y^2+z^2\ge\left|xy+yz+xz\right|\ge xy+yz+xz\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3zx\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)=3\)

\(\Rightarrow x+y+z\ge\sqrt{3}\)

\(\Rightarrow P\ge\frac{x+y+z}{2}\ge\frac{\sqrt{3}}{2}\) có GTNN là \(\frac{\sqrt{3}}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

Vậy \(P_{min}=\frac{\sqrt{3}}{2}\) tại \(x=y=z=\frac{1}{\sqrt{3}}\)