Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có:
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{57}{7}\)
+) \(\frac{x}{6}=\frac{57}{7}\Rightarrow x=\frac{342}{7}\)
+) \(\frac{y}{4}=\frac{57}{7}\Rightarrow y=\frac{228}{7}\)
+) \(\frac{z}{3}=\frac{57}{7}\Rightarrow z=\frac{171}{7}\)
Vậy \(x=\frac{342}{7},y=\frac{228}{7},z=\frac{171}{7}\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
= \(\frac{y+z+1+z+x+2+x+y-3}{x+y+z}\)
= \(\frac{2\left(x+y+z\right)}{x+y+z}\)
= 2
+) \(\frac{1}{x+y+z}=2\)
=> \(x+y+z=\frac{1}{2}=0,5\)
\(\Rightarrow\left\{\begin{matrix}x+y=0,5-z\\x+z=0,5-y\\y+z=0,5-x\end{matrix}\right.\)
=> \(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)
\(\Rightarrow\left\{\begin{matrix}\frac{15-x}{x}=2\\\frac{2,5-y}{y}=2\\\frac{-2,5-z}{z}=2\end{matrix}\right.\)
+ \(\frac{15-x}{x}=2\Rightarrow2x+x=15\Rightarrow3x=15\Rightarrow x=5\)
+ \(\frac{2,5-y}{y}=2\Rightarrow2y+y=2,5\Rightarrow3y=2,5\Rightarrow y=\frac{5}{6}\)
+ \(\frac{-2,5-z}{z}=2\Rightarrow2z+z=\left(-2,5\right)\Rightarrow3z=\left(-2,5\right)\Rightarrow z=\frac{-5}{6}\)
mk nhầm một chỗ nha bn : \(\frac{1,5-x}{x}=2\Rightarrow2x+x=1,5\Rightarrow3x=1,5\Rightarrow x=0,5\)
\(\dfrac{y}{0,4}\) chuyển thành y.\(\dfrac{5}{2}\)=\(\dfrac{y+z}{4}\)
suy ra \(\dfrac{x}{4}\)=y=\(\dfrac{y+z}{10}\) y= \(\dfrac{y+z}{10}\) suy ra y=\(\dfrac{y}{10}+\dfrac{z}{10}\) suy ra \(\dfrac{9}{10}y=\dfrac{1}{10}z\) suy ra \(y=\dfrac{1}{9}z\) hay z=9y x+y+z=4y+y+9y=14y 14y=280 y=280:14=20 x=20.4=80 z=280-(20+80)=180 Tick mk nhaBài 11: Tìm x, y, z:
a) x=4y=0,4(y+z)x=4y=0,4(y+z) và x+y+z=280
bạn ơi bn lấy ảnh mạng phải ko
hình ảnh girl xinh đáng yêu và quyến rũ nhất Việt Nam - Ảnh đẹp
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\)(a, b, m ∈ Z, b # 0)
Vì x < y nên ta a < b
Ta có: x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{a+b}{2m}\)
Vì a < b \(\Rightarrow\) a + a < a + b \(\Rightarrow\) 2a < a + b
Vì 2a < a + b nên x < z (1)
Vì a < b \(\Rightarrow\) a + b < b + b \(\Rightarrow\) a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta \(\Rightarrow\) x < z < y
* Với \(a=1\) ta thấy BĐT đúng.
* Ta xét khi \(a>1\)
Hàm nghi số \(y=\) \(y=\frac{1}{a^1}=\left(\frac{1}{a}\right)^1\) nghịch biến với \(\forall t\in R,\) khi \(a>1\).
Khi đó ta có
Ta có: \(\left(x-y\right)\left(\frac{1}{a^x}-\frac{1}{a^y}\right)\le0,\forall x,y\in R\Rightarrow\frac{x}{a^x}+\frac{y}{a^y}\le\frac{x}{a^y}+\frac{y}{a^x}\) (1)
Chứng minh tương tự \(\frac{y}{a^y}+\frac{z}{a^z}\le\frac{z}{a^y}+\frac{y}{a^z}\) (2) \(\frac{z}{a^z}+\frac{x}{a^x}\le\frac{x}{a^z}+\frac{z}{a^x}\) (3)
Cộng vế với vế (1), (2) và (3) ta được \(2\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{y+z}{a^x}+\frac{z+x}{a^y}+\frac{x+y}{a^z}\) (4)
Cộng 2 vế của (4) với biểu thức \(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\) ta được
\(3\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{x+y+z}{a^x}+\frac{x+y+z}{a^y}+\frac{x+y+z}{a^z}=\left(x+y+z\right)\left(\frac{1}{a^x}+\frac{1}{a^y}+\frac{1}{a^z}\right)\)
ta có : \(\frac{x+y}{3}\)= \(\frac{y+z}{2}\)=\(\frac{x+y+y+z}{3+2}\)=\(\frac{x+2y+z}{5}\)=\(\frac{9+y}{5}\)
=> x+2y+z=9+y
ta lại có :\(\frac{5-z}{1}\)=\(\frac{y+z}{2}\)=\(\frac{5-z+y+z}{1+2}\)=\(\frac{5+y}{3}\)=\(\frac{x+y}{3}\)
=> 5+y=x+y
=>x=5
ta có : \(\frac{9+y}{5}\)=\(\frac{y+z}{2}\)=\(\frac{9+y-y+x}{5-2}\)=\(\frac{9+x}{3}\)=\(\frac{x+y}{3}\)
=> 9+x=x+y
=>y=9
ta có : \(\frac{y+z}{2}\)=\(\frac{9+y}{5}\)=>\(\frac{9+z}{2}\)=\(\frac{18}{5}\)=3,6
=> 9+z=3,6.2=7,2
=>z=-1,8
=> x+y=5+9=14
=>x+y+z=5+9+(-1,8)=12,2
xong rồi nha bn
Bài 1:
Giải:
Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)
+) \(\frac{x}{21}=4\Rightarrow x=84\)
+) \(\frac{y}{14}=4\Rightarrow y=56\)
+) \(\frac{z}{15}=4\Rightarrow z=60\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(84;56;60\right)\)
Bài 2:
Giải:
Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)
\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)
\(\Rightarrowđpcm\)
BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau
BT2 là cũng vậy r ss
Ta có :
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)