\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

Giá trị nhỏ nhất là 1/8

29 tháng 8 2021

\(\dfrac{1}{8}\)

22 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{4}{2y}\ge\frac{\left(1+2\right)^2}{x+2y}=\frac{9}{x+2y}\)(1)

Từ GT x + 2y ≤ 3z => \(\frac{1}{x+2y}\ge\frac{1}{3z}\)<=> \(\frac{9}{x+2y}\ge\frac{3}{z}\)(2)

Từ (1) và (2) => \(\frac{1}{x}+\frac{2}{y}\ge\frac{9}{x+2y}\ge\frac{3}{z}\)=> \(\frac{1}{x}+\frac{2}{y}\ge\frac{3}{z}\left(đpcm\right)\)

Đẳng thức xảy ra <=> x=y=z=1

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)

29 tháng 8 2021

Giá trị lớn nhất là 3

29 tháng 8 2021

Giá trị lớn nhất là 2

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 1:

\((x,y,z)=(\frac{2a^2}{bc}; \frac{2b^2}{ca}; \frac{2c^2}{ab})\) (\(a,b,c>0\) )

Khi đó:

\(\text{VT}=\frac{\frac{4a^4}{b^2c^2}}{\frac{4a^4}{b^2c^2}+\frac{4a^2}{bc}+1}+\frac{\frac{4b^4}{c^2a^2}}{\frac{4b^4}{c^2a^2}+\frac{4b^2}{ca}+4}+\frac{\frac{4c^4}{a^2b^2}}{\frac{4c^4}{a^2b^2}+\frac{4c^2}{ab}+4}\)

\(=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\)

\(\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+a^2bc+b^2ac+c^2ab+(a^2b^2+b^2c^2+c^2a^2)}\)

(Áp dụng BĐT Cauchy_Schwarz)

Theo BĐT Cauchy dễ thấy:

\(a^2b^2+b^2c^2+c^2a^2\geq a^2bc+b^2ca+c^2ab\)

\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)}=\frac{(a^2+b^2+c^2)^2}{(a^2+b^2+c^2)^2}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=2$

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 2:

Đặt \((x,y,z)=\left(\frac{a}{b};\frac{b}{c}; \frac{c}{a}\right)\)

Ta có:

\(\text{VT}=\left(\frac{a}{b}+\frac{c}{b}-1\right)\left(\frac{b}{c}+\frac{a}{c}-1\right)\left(\frac{c}{a}+\frac{b}{a}-1\right)\)

\(=\frac{(a+c-b)(b+a-c)(c+b-a)}{abc}\)

Áp dụng BĐT Cauchy:

\((a+c-b)(b+a-c)\leq \left(\frac{a+c-b+b+a-c}{2}\right)^2=a^2\)

\((b+a-c)(c+b-a)\leq \left(\frac{b+a-c+c+b-a}{2}\right)^2=b^2\)

\((a+c-b)(c+b-a)\leq \left(\frac{a+c-b+c+b-a}{2}\right)^2=c^2\)

Nhân theo vế:

\(\Rightarrow [(a+c-b)(b+a-c)(c+b-a)]^2\leq (abc)^2\)

\(\Rightarrow (a+c-b)(b+a-c)(c+b-a)\leq abc\)

\(\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$

29 tháng 8 2021

Giá trị nhỏ nhất là 2

5 tháng 1 2018

Ta có: \(\dfrac{1}{1+x}\ge2-\dfrac{1}{1+y}-\dfrac{1}{1+z}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}\)

\(=\dfrac{y}{1+y}+\dfrac{z}{1+z}=2\sqrt{\dfrac{yz}{\left(1+y\right)\left(1+z\right)}}\)

Tương tự vs 2 bđt còn lại: \(\left\{{}\begin{matrix}\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}}\\\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\end{matrix}\right.\)

Nhân các vế của 3 bđt trên => ĐPCM

6 tháng 1 2018

dấu = cuối ở phần biến đổi 1/1+x sửa thành \(\ge\)

AH
Akai Haruma
Giáo viên
20 tháng 10 2018

Bạn xem tại đây :

Câu hỏi của Dương Thị Thu Ngọc - Toán lớp 9 | Học trực tuyến