Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cộng 3 vế lại cùng 1 lúc ta sẽ có (x+1)2 +(y+1)2+(z+1)2 = 0.
dấu bằng xảy ra khi cả 3 biểu thức bằng 0, suy ra x=y=z= -1
thế vào A thì A= -3
bạn chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/60436537466.html
Hình như đề bài sai đó bạn. \(x^2+y^2+z^2\)=0 nê x=y=z=0, vì sao lại có 2(x+y+z+3/2)=0 được
Lời giải:
Ta có: \(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)
\(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)
Vì \((x-y)^2; (y-z)^2;(z-x)^2\geq 0\), do đó để tổng của chúng bằng $0$ thì:
\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)
\(\Rightarrow 3x^{2017}=3y^{2017}=3z^{2017}=x^{2017}+y^{2017}+z^{2017}=9\)
\(\Rightarrow x=y=z=\sqrt[2017]{3}\)
\(\Rightarrow \left(\frac{2017x+2018y-4023z}{3}\right)^{2017}=\left(\frac{12x}{3}\right)^{2017}=(4x)^{2017}=3.4^{2017}\)
Đặt: \(x-1=a;\)\(y-3=b;\)\(z-8=c\)
=> \(a+b+c=x+y+z-12=0\)(do x+y+z = 12 )
Ta dễ dàng chứng minh được:
nếu a + b + c = 0
thì: a3 + b3 + c3 = 3abc
Như vậy ta có:
\(\left(x-1\right)^3+\left(y-3\right)^3+\left(z-8\right)^3=0\)
<=> \(3\left(x-1\right)\left(y-3\right)\left(z-8\right)=0\)
đến đây bạn xử lí nốt nhé
\(\left(x+y+z\right)^3-x^3-y^3-z^3=0\)
\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)-x^3-y^3-z^3=0\)
=>3(x+y)(y+z)(x+z)=0
=>(x+y)(y+z)(x+z)=0
\(\left(x^{11}+y^{11}\right)\left(y^7+z^7\right)\left(x^{2017}+z^{2017}\right)\)
\(=\left(x+y\right)\cdot A\cdot\left(y+z\right)\cdot B\cdot\left(x+z\right)\cdot C\)
=0
x+y+z=a\(\rightarrow\frac{1}{x+y+z}=\frac{1}{a}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}=0\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left[\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}a=z\\a=x\\a=y\end{matrix}\right.\)
thay vào ta đều tính được S=0