Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3
bn tìm đề thi hsg tỉnh thanh hóa lớp 9 năm nào đó là thấy
bài này dài,ngại làm
đặt là được
Câu hỏi của Hoàng Gia Anh Vũ - Toán lớp 9 - Học toán với OnlineMath
trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)
\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(y^2+1\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\ge x+1-\frac{xy+y}{2}\)
Tương tự ta có:
\(\frac{y+1}{z^2+1}\ge y+1-\frac{yz+z}{2}\)
\(\frac{z+1}{1+x^2}\ge z+1-\frac{zx+x}{2}\)
Cộng vế theo vế ta có:
\(Q\ge3+\left(x+y+z\right)-\frac{x+y+z+xy+yz+zx}{2}\)
\(=3+\frac{x+y+z-xy-yz-zx}{2}\)
Có BĐT phụ sau:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( tự cm )
\(\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)
Khi đó \(P\ge3\)
Dấu "=" xảy ra tại \(x=y=z=1\)
Chọn điểm rơi dễ áp dụng Côso như sau:
\(\frac{x^2}{y+z}+k^2\left(y+z\right)\ge2\sqrt{\frac{x^2}{y+z}.k^2\left(y+z\right)}=2kx\text{ }\left(k>0\right)\)
Dự đoán dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\) và bất đẳng thức Côsi xảy ra dấu bằng khi \(\frac{x^2}{y+z}=k^2\left(y+z\right)\)
\(\Rightarrow\frac{\left(\frac{2}{3}\right)^2}{\frac{2}{3}+\frac{2}{3}}=k^2\left(\frac{2}{3}+\frac{2}{3}\right)\Rightarrow k^2=\frac{1}{4}\)
=> Trình bày.
Áp dụng bất đẳng thức Côsi ta có:
\(\frac{x^2}{y+z}+\frac{1}{4}\left(y+z\right)+\frac{y^2}{x+z}+\frac{1}{4}\left(x+z\right)+\frac{z^2}{x+y}+\frac{1}{4}\left(x+y\right)\)\(\ge2\sqrt{\frac{x^2}{y+z}.\frac{1}{4}\left(y+z\right)}+...\)
\(=x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge x+y+z-\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\left(x+y+z\right)=1\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}.\)
Vậy GTNN của A là 1.