\(\dfrac{\left(ax+by+\text{c}z\right)^2}{x^2+y^2+z^2}\) = a
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

\(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+x^2}=a^2+b^2+c^2\)

\(\Leftrightarrow\left(x^2+y^2+x^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+x^2z^2=a^2x^2+b^2y^2+c^2z^2+2axby+2axcz+2bycz\)\(\Leftrightarrow\left(a^2y^2+2axby+b^2x^2\right)+\left(a^2z^2+2axcz+c^2x^2\right)+\left(b^2z^2+2bycz+c^2y^2\right)=0\)\(\Leftrightarrow\left(ay+bx\right)^2+\left(az+cx\right)^2+\left(bz+cy\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{a}{x}=\dfrac{c}{z}\\\dfrac{b}{y}=\dfrac{c}{z}\end{matrix}\right.\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)

1 tháng 12 2017

lm khiến ng' ta chả hiểu j

tke cx lm

oeoe

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Lời giải:

\(\frac{(ax+by+cz)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)

\(\Rightarrow (ax+by+cz)^2=(a^2+b^2+c^2)(x^2+y^2+z^2)\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(\Leftrightarrow 2axby+2bycz+2axcz=a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2\)

\(\Leftrightarrow (a^2y^2+b^2x^2-2axby)+(a^2z^2+c^2x^2-2axcz)+(b^2z^2+c^2y^2-2bycz)=0\)

\(\Leftrightarrow (ay-bx)^2+(az-cx)^2+(bz-cy)^2=0\)

Vì bản thân mỗi số hạng đều không âm nên để tổng của chúng bằng $0$ thì:

\((ay-bx)^2=(az-cx)^2=(bz-cy)^2=0\Rightarrow ay=bx; az=cx; bz=cy\)

\(\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Ta có đpcm.

30 tháng 9 2018

Ta có : \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)

\(\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2axby+2axcz+2bycz=a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)

\(\Leftrightarrow2axby+2axvz+2bycz=a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2\)

\(\Leftrightarrow a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2-2axby-2azcx-2bycz=0\)

\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

Do \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)

:Dbanh

23 tháng 10 2018

Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{1}{k}\Rightarrow x=ak;y=bk;y=ck\)

\(\Rightarrow\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{a^2k^2+b^2k^2+c^2k^2}{\left(a^2k+b^2k+c^2k\right)^2}=\frac{k^2\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\frac{1}{a^2+b^2+c^2}\)

23 tháng 10 2018

Mạo phép sửa đề!CMR: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{3}{a^2+b^2+c^2}\)

Ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) 

\(\Rightarrow\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{x^2+y^2+z^2}{ax+by+cz}\)  (t/c dãy tỉ số bằng nhau)

\(\Rightarrow\frac{x^2}{\left(ax\right)^2}=\frac{y^2}{\left(by\right)^2}=\frac{z^2}{\left(cz\right)^2}=\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}\) (1)

Lại có: \(\frac{x^2}{\left(ax\right)^2}=\frac{y^2}{\left(by\right)^2}=\frac{z^2}{\left(cz\right)^2}=\) \(\frac{x^2}{a^2x^2}=\frac{y^2}{b^2y^2}=\frac{z^2}{c^2z^2}=\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}=\frac{3}{a^2+b^2+c^2}\)

25 tháng 2 2018

Phương Ann Nhã Doanh Đinh Đức Hùng Mashiro Shiina

Nguyễn Thanh Hằng Nguyễn Huy Tú Lightning Farron

Akai Haruma Võ Đông Anh Tuấn

mấy anh chị cm cho e thêm cái : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)

27 tháng 5 2018

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{a}=\dfrac{y}{b}\\\dfrac{y}{b}=\dfrac{z}{c}\\\dfrac{x}{a}=\dfrac{z}{c}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ay=bx\\bz=cy\\az=cx\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ay-bx=0\\bz-cy=0\\az-cx=0\end{matrix}\right.\)

\(\Leftrightarrow\left(ax-by\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)

\(\Leftrightarrow\left(a^2x^2-2axby+b^2y^2\right)+\left(b^2z^2-2bzcy+c^2y^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)=0\)

\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2-\left(a^2x^2+b^2b^2+c^2y^2+2axby+2azcx+2bzcy\right)=0\)

\(\Leftrightarrow x^2\left(a^2+b^2+c^2\right)+y^2\left(a^2+b^2+c^2\right)+z^2\left(a^2+b^2+c^2\right)-\left(ax+ab+cz\right)^2=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)-\left(ax+by+cz\right)^2=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

27 tháng 5 2018

Ta có : \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\) ( theo bđt Bu-nhi-a Cop-xki )

Dấu "=" xảy ra khi \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

Vậy nếu \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) thì \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

6 tháng 10 2017

2) ta có: \(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)\)\(VP=\left(ax+by\right)^2\)

tính hiệu của cả VT và VP

suy ra: \(\left(ay+bx\right)^2=0\Rightarrow ay=bx\)

\(x,y\ne0\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)

3)(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2 (1)

biến đổi đẳng thức (1) thành (ay+bx)2 + (bz-cy)2 +(az-cx)2 =0

\(\Rightarrow\) Đpcm