Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) Áp dụng bất đẳng thức Bunyakovsky
\(\Rightarrow\left(x^4+yz\right)\left(1+1\right)\ge\left(x^2+\sqrt{yz}\right)^2\)
\(\Rightarrow\dfrac{x^2}{x^4+yz}\le\dfrac{2x^2}{\left(x^2+\sqrt{yz}\right)^2}\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{y^2}{y^4+xz}\le\dfrac{2y^2}{\left(y^2+\sqrt{xz}\right)^2}\\\dfrac{z^2}{z^4+xy}\le\dfrac{2z^2}{\left(z^2+\sqrt{xy}\right)^2}\end{matrix}\right.\)
\(\Rightarrow VT\le2\left[\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)
Chứng minh rằng \(2\left[\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\dfrac{3}{4}\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow x^2+\sqrt{yz}\ge2\sqrt{x^2\sqrt{yz}}=2x\sqrt{\sqrt{yz}}\)
\(\Rightarrow\left(x^2+\sqrt{yz}\right)^2\ge4x^2\sqrt{yz}\)
\(\Rightarrow\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}\le\dfrac{x^2}{4x^2\sqrt{yz}}=\dfrac{1}{4\sqrt{yz}}\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}\le\dfrac{1}{4\sqrt{xz}}\\\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\dfrac{1}{4\sqrt{xy}}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)^2}\le\dfrac{1}{4}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)
Chứng minh rằng \(\dfrac{1}{4}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le3\)
Theo đề bài ta có \(x^2+y^2+z^2=3xyz\)
\(\Rightarrow\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}=3\)
\(\Rightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le3\)
\(\Leftrightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\dfrac{1}{\sqrt{xy}}\le\dfrac{\dfrac{1}{x}+\dfrac{1}{y}}{2}\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{xz}}\le\dfrac{\dfrac{1}{x}+\dfrac{1}{z}}{2}\\\dfrac{1}{\sqrt{yz}}\le\dfrac{\dfrac{1}{z}+\dfrac{1}{y}}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) (1)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\dfrac{x}{yz}+\dfrac{y}{xz}\ge2\sqrt{\dfrac{1}{z^2}}=\dfrac{2}{z}\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{y}{xz}+\dfrac{z}{xy}\ge\dfrac{2}{x}\\\dfrac{x}{zy}+\dfrac{z}{xy}\ge\dfrac{2}{y}\end{matrix}\right.\)
\(\Rightarrow2\left(\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}\right)\ge2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(\Leftrightarrow\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}\ge\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) (2)
Từ (1) và (2)
\(\Rightarrow\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\le3\) ( đpcm )
Vậy \(\dfrac{1}{4}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\le\dfrac{3}{4}\)
\(\Rightarrow2\left[\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\le\dfrac{3}{2}\)
Mà \(VT\le2\left[\dfrac{x^2}{\left(x^2+\sqrt{yz}\right)^2}+\dfrac{y^2}{\left(y^2+\sqrt{xz}\right)^2}+\dfrac{z^2}{\left(z^2+\sqrt{xy}\right)}\right]\)
\(\Rightarrow VT\le\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(x=y=z=1\)
3. Ta có :\(x^2\left(1-2x\right)=x.x.\left(1-2x\right)\le\dfrac{\left(x+x+1-2x\right)^3}{27}=\dfrac{1}{27}\)(bđt cô si)
Dấu "=" xảy ra khi :x=1-2x\(\Leftrightarrow x=\dfrac{1}{3}\)
Vậy max của Qlaf 1/27 khi x=1/3
Lời giải:
Áp dụng BĐT AM-GM:
\(3xyz=x^2+y^2+z^2\geq 3\sqrt[3]{x^2y^2z^2}\)
\(\Rightarrow xyz\geq \sqrt[3]{x^2y^2z^2}\Rightarrow xyz\geq 1\)
Do đó: \(x+y+z\geq 3\sqrt[3]{xyz}\geq 3\sqrt[3]{1}=3\)
Khi đó, áp dụng BĐT Cauchy-Schwarz (hay vẫn gọi là Svac-so ) ta có:
\(\frac{x^2}{y+2}+\frac{y^2}{z+2}+\frac{z^2}{x+2}\geq \frac{(x+y+z)^2}{y+2+z+2+x+2}=\frac{(x+y+z)^2}{x+y+2+6}\geq \frac{(x+y+z)^2}{3(x+y+z)}=\frac{x+y+z}{3}\geq \frac{3}{3}=1\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z=1$
Theo BĐT Cô-si dưới dạng engel ta có :
\(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{4}{4}=1\)
Dấu \("="\) xảy ra khi \(x=y=z=\dfrac{2}{3}\)
Cách khác :
\(\dfrac{x^2}{x+y}+\dfrac{x+y}{4}\ge2.\sqrt{\dfrac{x^2}{x+y}.\dfrac{x+y}{4}}=x\\ \dfrac{y^2}{y+z}+\dfrac{y+z}{4}\ge y\\ \dfrac{z^2}{x+z}+\dfrac{x+z}{4}\ge z\\ \Rightarrow\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}+\dfrac{x+y+z}{2}\ge x+y+z\\ \Rightarrow\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\ge2-1=1\)