\(P=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{zx+z+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2021

 \(M=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)

Vì xyz=1 nên \(x\ne0;y\ne0;z\ne0\)

Ta có \(\frac{1}{1+x+xy}=\frac{z}{\left(1+y+yz\right)xz}=\frac{xz}{z+xz+1}\)

Tương tự \(\frac{1}{1+y+yz}=\frac{xz}{\left(1+y+yz\right)xz}=\frac{xz}{xz+z+1}\)

Khi đó \(M=\frac{z}{z+xz+1}+\frac{xz}{xz+1+z}+\frac{1}{1+z+xz}=\frac{z+xz+1}{z+zx+1}=1\)

21 tháng 5 2019

Ta có :x + y + z = -1 \(\Rightarrow\)x + y =-( 1 + z )

 xy + yz + xz = 0 \(\Rightarrow\)xy = - z ( x + y ) = z ( z + 1 )

Tương tự : xz = y ( y + 1 ) ; yz = x . ( x + 1 )

\(M=\frac{z\left(z+1\right)}{z}+\frac{y\left(y+1\right)}{y}+\frac{x\left(x+1\right)}{x}=x+y+z+3=2\)

30 tháng 7 2016

Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

=>\(\frac{yz+zx+xy}{xyz}=0\Rightarrow xy+yz+zx=0\)

\(P=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=\frac{y^2z^2yz+z^2x^2xz+x^2y^2xy}{x^2y^2z^2}=\frac{\left(yz\right)^3+\left(zx\right)^3+\left(xy\right)^3}{x^2y^2z^2}\)

Ta có: nếu a+b+c=0 thì a^3 +b^3 +c^3 =3abc

Mà xy+yz+zx=0

=>\(\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3=3\cdot xy\cdot yz\cdot zx=3x^2y^2z^2\)

=>\(P=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)

 

 

 

 

30 tháng 7 2016

Cho mik sưa chút

\(P=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)

Áp dụng hằng đẳng thức a³ + b³ + c³ = [(a + b + c)(a² + b²+ c²-ab-bc-ca)+3abc]

\(\Rightarrow P=xyz\left[\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{1}{xy}-\frac{1}{yz}-\frac{1}{zx}\right)+3xyz\right]\)

\(\Rightarrow P=xyz.3.\frac{1}{xyz}=3\)

 

15 tháng 1 2018

Từ \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

\(\Rightarrow\)\(x+y+z=xyz\)

Ta có : \(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự : \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(z+x\right)}\)\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(y+z\right)\left(y+x\right)}\)

Nên \(Q=\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

         \(Q=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng BĐT \(\sqrt{A.B}\le\frac{A+B}{2}\left(A,B>0\right)\)

Dấu "=" xảy ra khi A = B :

Ta được :

\(Q\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Vậy GTLN của \(Q=\frac{3}{2}\)khi \(x=y=z=\sqrt{3}\)

2 tháng 1 2016

ta có x/xy+x+1 +y/yz+y+1 +z/xz+z+1

=xz/xyz+xz+z +xyz/xyz^2+xyz+xz +z/xz+z+1

=xz/1+xz+z +1/z+1+xz +z/ xz+z+1

=xz+z+1 /xz+z+1 =1

25 tháng 12 2016

Giá trị lớn nhất của đa thức E=-x^2-4x-y^2+2y

25 tháng 12 2016

1

 

7 tháng 11 2018

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\Rightarrow\frac{x+y+z}{xyz}=0\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

\(N=\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=\frac{x^3+y^3+z^3}{xyz}=\frac{3xyz}{xyz}=3\)