K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2015

Dùng bđt bunhiacopxki là được.

(12 + 1+ 12)( x2 + y+ z2 )>= (x + y + z )2

11 tháng 7 2016

1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}\Leftrightarrow}2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

2) Áp dụng từ câu 1) ta có : \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)

3)  Bạn cần sửa lại một chút thành \(x^4-2x^3+2x^2-2x+1\ge0\)

Ta có : \(x^4-2x^3+2x^2-2x+1=\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)=x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)

3 tháng 7 2017

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

3 tháng 7 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng

27 tháng 7 2016

1) Từ \(x+y+z=6\)  và \(x^2+y^2+z^2=12\)ta dễ dàng suy ra \(xy+yz+zx=12\)

Như vậy \(x^2+y^2+z^2=xy+yz+zx\) \(\Leftrightarrow x=y=z\)

Mà \(x+y+z=6\)nên \(x=y=z=2\)thay vào Q ta tính được Q = 3.

30 tháng 7 2016

Bài dưới mình có làm ra được 2 cách, bạn hiểu cách nào thì làm

Cách 1: Dùng phương pháp quy nạp (cách này mình cũng không biết được sử dụng trong trg hợp này ko)

-Với n=1 thì \(2^{2n}\left(2^{2n+1}-1\right)-1=2^2\left(2^3-1\right)-1=4.8-1=27\)chia hết cho 9

Vậy mệnh đề đúng với n=1

-Giả sử tồn tại số k sao cho \(2^{2k}\left(2^{2k+1}-1\right)-1\) chia hết cho 9 (giả thiết quy nạp). Do đó,  \(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1

Ta phải cm mệnh đề cũng đúng với k+1:

Thật vậy, \(2^{2\left(k+1\right)}\left(2^{2\left(k+1\right)+1}-1\right)-1=2^{2k+2}\left(2^{2k+3}-1\right)-1=2^{2k+4}\left(2^{2k+1}-\frac{1}{4}\right)-1\)

<=> \(2^{2k+4}\left(2^{2k+1}-1\right)+\frac{3}{4}\left(2^{2k+4}\right)-1=2^{2k}.16.\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)

Ta thấy:

\(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1. Do đó, \(2^{2k}.16.\left(2^{2k+1}-1\right)\)chia 9 dư 7.

Các số có cơ số =2, số mũ lẻ thì tích của số đó với 3 khi chia 9 dư 6. Còn các số có cơ số =2, số mũ chẵn thì tích của số đó với 3 khi 9 dư 3. Vậy tích \(3.2^{2k+2}\) chia 9 dư 3

-1 chia 9 dư -1

Vậy \(2^{2k+4}\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)chia 9 dư 7+3-1=9 chia hết cho 9

Kết luận: Mệnh đề đúng với mọi n thuộc Z

28 tháng 3 2018

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+3-2x-2y-2z\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)

Dáu "="  xảy ra  \(\Leftrightarrow\) \(x=y=z=1\)

a,b,c,d > 0 ta có:

- a < b nên a.c < b.c

- c < d nên c.b < d.b

Áp dụng tính chất bắc cầu ta được: a.c < b.c < b.d hay a.c < b.d (đpcm)

8 tháng 7 2016

1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\left(1\right)\\y^2+z^2\ge2yz\left(2\right)\\z^2+x^2\ge2zx\left(3\right)\end{cases}}\)

 Cộng (1) , (2) , (3) theo vế được ; \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

2) Áp dụng câu trên được : \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)

Tương tự : \(\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)

Vậy \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)

3) Đề đúng phải là : \(x^4-2x^3+2x^2-2x+1\ge0\)

Ta có : \(x^4-2x^3+2x^2-2x+1\ge0\left(1\right)\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)\ge0\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)(Luôn đúng)

Do đó (1) được chứng minh.

4 tháng 7 2016

bài 1 phân tích da thức hả bạn

17 tháng 8 2016

\(1,x+y+z=0=>x=-\left(y+z\right)\)

\(=>x^2=\left(y+z\right)^2=y^2+2yz+z^2\)

\(=>x^2-y^2-z^2=2yz\)

\(=>\left(x^2-y^2-z^2\right)^2=\left(2yz\right)^2=4y^2z^2\)

\(=>x^4+y^4+z^4-2x^2y^2-2x^2z^2+2y^2z^2=4y^2z^2\)

\(=>x^4+y^4+z^4=4y^2z^2-2y^2z^2+2x^2z^2+2x^2y^2=2x^2y^2+2y^2z^2+2x^2z^2\)

\(=>2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\left(đpcm\right)\)

\(2,A=2\left(x^6-y^6\right)-3\left(x^4+y^4\right)\)

\(=2\left[\left(x^2\right)^3-\left(y^2\right)^3\right]-3\left(x^4+y^4\right)\)

\(=2\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)

\(=2\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)

\(=2x^4+2x^2y^2+2y^4-3x^4-3y^4=-x^4+2x^2y^2-y^4\)

\(=-\left(x^4-2x^2y^2+z^4\right)=-\left[\left(x^2-y^2\right)^2\right]=-1\) (do x2-y2=1)

 

17 tháng 8 2016

\(3,\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)

\(=\left(x-3\right)\left(x+3\right)\left(x-1\right)\left(x+1\right)+15=\left(x^2-9\right)\left(x^2-1\right)+15\left(1\right)\)

Đặt \(x^2-5=t\),khi đó (1) trở thành :

\(\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)

\(=\left(x^2-6\right)\left(x^2-4\right)=\left(x^2-6\right)\left(x-2\right)\left(x+2\right)\)

\(4,a,20^n-1=20^n-1^n=\left(20-1\right)\left(20^{n-1}+20^{n-1}+...+1^{n-1}\right)\)

chia hết cho (20-1)=19

=>20n-1 là hợp số vì có nhiều hơn 2 ước

b) đang kẹt,vấn đề nằm ở đề