Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
Chứng minh rằng:
\(8x+8y+8z\le4^{x+1}+4^{y+1}+4^{y+2}\)
Ta có:
\(8x+8y+8z=8.\left(x+y+z\right)=8.6=48\)(1)
Áp dụng bất đẳng thức AM-GM ta có:
\(4^{x+1}+4^{y+1}+4^{z+1}\ge3\sqrt[3]{4^{x+1}.4^{y+1}.4^{z+1}}\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge3\sqrt[3]{4^{x+y+z+3}}\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge3\sqrt[3]{4^{6+3}}\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge3\sqrt[3]{4^9}\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge3.64\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge192\)(2)
Dấu "=" sảy ra khi \(x=y=z=2\).
Từ (1) và (2) suy ra:
\(8x+8y+8z\le4^{x+1}+4^{y+1}+4^{y+2}\)(đpcm)
Chúc bạn học tốt!!!
\(\frac{x^5}{y^4}+\frac{x^5}{y^4}+y+y+y\ge5\sqrt[5]{\frac{x^{10}y^3}{y^8}}=\frac{5x^2}{y}\)
Tương tự: \(\frac{2y^5}{z^4}+3z\ge\frac{5y^2}{z}\) ; \(\frac{2z^5}{x^4}+3x\ge\frac{5z^2}{x}\)
Cộng vế với vế:
\(2\left(\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\right)+3\left(x+y+z\right)\ge5\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\ge5\left(x+y+z\right)\)
\(\Rightarrow2\left(\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\right)\ge2\left(x+y+z\right)\ge2\)
\(\Rightarrow\frac{x^5}{y^4}+\frac{y^5}{z^4}+\frac{z^5}{x^4}\ge1\)
Dấu "=" xay ra khi \(x=y=z=\frac{1}{3}\)
\(\frac{1}{x+1}=1-\frac{1}{y+1}+1-\frac{1}{z+1}=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
Tương tự: \(\frac{1}{y+1}\ge2\sqrt{\frac{zx}{\left(z+1\right)\left(x+1\right)}}\); \(\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)
Nhân vế với vế:
\(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+z\right)\left(z+1\right)}\)
\(\Leftrightarrow xyz\le\frac{1}{8}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
Lời giải:
Để ý rằng \((x+y)(y+z)(z+x)=(x+y+z)(xy+yz+xz)-xyz\)
Áp dụng BĐT AM-GM thì \((x+y+z)(xy+yz+xz)\geq 9xyz\)
\(\Rightarrow (x+y)(y+z)(x+z)\geq \frac{8}{9}(xy+yz+xz)(x+y+z)\)
Mặt khác, dùng AM-GM dễ thấy rằng \(xy+yz+xz\geq\sqrt[3]{(xyz)^2}=3\)
Do đó \(\Rightarrow (x+y)(y+z)(x+z)\geq \frac{8}{3}(xy+yz+xz)(x+y+z)\)
Dấu $=$ xảy ra khi $x=y=z=1$
Đề bài sai bạn: ví dụ cho \(y=z=0\); \(x=4\) thì \(\frac{4}{6}\le\frac{1}{3}\) (vô lý)
Đặt \(\left(x;y;z\right)=\left(2a^2;2b^2;2c^2\right)\Rightarrow abc=1\)
\(VT=\frac{1}{4a^2+2b^2+6}+\frac{1}{4b^2+2c^2+6}+\frac{1}{4c^2+2a^2+6}\)
\(VT=\frac{1}{\left(2a^2+2\right)+\left(2a^2+2b^2\right)+4}+\frac{1}{\left(2b^2+2\right)+\left(2b^2+2c^2\right)+4}+\frac{1}{\left(2c^2+2\right)+\left(2c^2+2a^2\right)+4}\)
\(VT\le\frac{1}{4a+4ab+4}+\frac{1}{4b+4bc+4}+\frac{1}{4c+4ca+4}=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\) hay \(x=y=z=2\)
Áp dụng BĐT AM-GM:
P\(\le\Sigma\frac{x}{2\sqrt{x}}=\frac{x+y+z}{2}=1\)
Pmax=1 khi x=y=z=2/3.
\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)
tương tự
\(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4}\);
\(\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\);
cộng vế với vế => đpcm
Dấu "=" xảy ra <=> x=y=z=1
Dấu "=" xảy ra khi x=y=2; ta có : \(\sqrt[3]{8^x.8^x}=\sqrt[3]{64^x}=4^x\)
\(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)
\(8^y+8^y+8^2\ge12.4^y\)
\(8^z+8^z+8^2\ge12.4^z\)
Cộng 3 vế BĐT trên => đpcm
Cách làm của bạn đúng nhưng cộng 3 vế của BĐT bạn chưa thể suy ra ĐPCM được.
Cộng 3 vế:
$\Rightarrow 2(8^x+8^y+8^z)+3.8^2\geq 3(4^{x+1}+4^{y+1}+4^{z+1})(1)$
Mà theo BĐT AM-GM:
$8^x+8^y+8^z\geq 3\sqrt[3]{8^{x}.8^y.8^z}=3\sqrt[3]{8^{x+y+z}}=3.8^2(2)$
Từ $(1);(2)\Rightarrow 3(8^x+8^y+8^z)\geq 2(8^x+8^y+8^z)+3.8^2\geq 3(4^{x+1}+4^{y+1}+4^{z+1})$
$\Rightarrow 8^x+8^y+8^z\geq 4^{x+1}+4^{y+1}+4^{z+1}$
(đpcm)