\(\sqrt{xy^3+yz^3+zx^3}+\sqrt{x^3y+y^3z+z...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{x^4}{y+3z}+\dfrac{y+3z}{16}+\dfrac{1}{4}+\dfrac{1}{4}\ge4\sqrt[4]{\dfrac{x^4}{y+3z}\cdot\dfrac{y+3z}{16}\cdot\dfrac{1}{4}\cdot\dfrac{1}{4}}=x\)

\(\Rightarrow\dfrac{x^4}{y+3z}\ge x-\dfrac{y+3z}{16}-\dfrac{1}{2}\)

Tương tự cho 2 BĐT còn lại:

\(\dfrac{y^4}{z+3x}\ge y-\dfrac{z+3x}{16}-\dfrac{1}{2};\dfrac{z^4}{x+3y}\ge z-\dfrac{x+3y}{16}-\dfrac{1}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{3}{4}\left(x+y+z\right)-\dfrac{3}{2}\ge\dfrac{3}{4}\cdot3-\dfrac{3}{2}=\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

11 tháng 6 2017

Cách khác:

\(\dfrac{x^4}{y+3z}+\dfrac{y^4}{z+3x}+\dfrac{z^4}{x+3y}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4.\sqrt{3\left(x^2+y^2+z^2\right)}}=\dfrac{\sqrt{\left(x^2+y^2+z^2\right)^3}}{4\sqrt{3}}\)

\(\ge\dfrac{\sqrt{\left(xy+yz+zx\right)^3}}{4\sqrt{3}}\ge\dfrac{3\sqrt{3}}{4\sqrt{3}}=\dfrac{3}{4}\)

Dấu = xảy ra khi \(x=y=z=1\)

9 tháng 1 2018

Bài này cũng dễ mà:

Áp dụng BĐT Cô-si, ta có:

\(y+z+1\ge3\sqrt[3]{yz}\)

\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)

\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)

\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)

\(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)

Áp dụng BĐT Cauchy -Schwaz:

\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

Mà:

\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)

\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)

Áp dụng BĐT Bunhicopski:

\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)

\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1

9 tháng 1 2018

@Lightning Farron vào thể hiện đẳng cấp đi anh zai :))

23 tháng 7 2018

Câu hỏi của Anh Tú Dương - Toán lớp 10 | Học trực tuyến

NV
26 tháng 2 2020

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\frac{xy}{\left(x+z\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}\right)\)

Tương tự: \(\sqrt{\frac{yz}{yz+x}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{x+z}\right)\) ; \(\sqrt{\frac{zx}{zx+y}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

30 tháng 5 2018

\(\dfrac{x}{x+\sqrt{x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)\(\ge\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

24 tháng 8 2018

sai rồi

NV
2 tháng 1 2020

\(VT=\sqrt[3]{1.1.\left(x+3y\right)}+\sqrt[3]{1.1.\left(y+3z\right)}+\sqrt[3]{1.1.\left(z+3x\right)}\)

\(VT\le\frac{1}{3}\left(1+1+x+3y\right)+\frac{1}{3}\left(1+1+y+3z\right)+\frac{1}{3}\left(1+1+z+3x\right)\)

\(VT\le\frac{1}{3}\left(6+4\left(x+y+z\right)\right)=3\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

23 tháng 2 2020

Dấu = k xảy ra vì nếu x=y=z=\(\frac{1}{3}\) thì k thỏa mãn đk đề bài.

22 tháng 6 2018

Ta có \(x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y+z\right)=xy\left(x+y+z\right)\)

Tương tự ta có

\(VT\ge\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}+\dfrac{\sqrt{yz\left(x+y+z\right)}}{yz}+\dfrac{\sqrt{zx\left(x+y+z\right)}}{zx}\)

\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\)

\(=\sqrt{x+y+z}.\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\)

\(\ge\sqrt{3\sqrt[3]{xyz}}.\dfrac{3\sqrt[6]{xyz}}{1}=3\sqrt{3}\)

\("="\Leftrightarrow x=y=z=1\)

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả