K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

Áp dụng BĐT : \(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 2 ( a > 0 ; b > 0)

Ta có : \(\dfrac{xy}{z}+\dfrac{xz}{y}\) = \(x\left(\dfrac{y}{z}+\dfrac{z}{y}\right)\) ≥ 2x ( x > 0 ; y > 0 ; z > 0) (1)

\(\dfrac{xz}{y}+\dfrac{zy}{x}=z\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\) ≥ 2z ( x > 0 ; y > 0 ; z > 0) ( 2)

\(\dfrac{xy}{z}+\dfrac{zy}{x}=y\left(\dfrac{x}{z}+\dfrac{z}{x}\right)\) ≥ 2y ( x > 0 ; y > 0 ; z > 0) ( 3)

Cộng từng vế của ( 1 ; 2 ; 3)

\(\dfrac{xy}{z}+\dfrac{xz}{y}\) + \(\dfrac{xz}{y}+\dfrac{zy}{x}\) + \(\dfrac{xy}{z}+\dfrac{zy}{x}\) ≥ 2x + 2y + 2z
\(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{zy}{x}\) ≥ x + y + z

30 tháng 4 2018

Dễ thôi

\(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\ge x+y+z\)

\(xyz(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y})\ge xyz(x+y+z)\)

\(x^2y^2+x^2z^2+y^2z^2\ge x^2yz+xz^2y+y^2zx\)\(2x^2y^2+2x^2z^2+2y^2z^2\ge2x^2yz+2xz^2y+2y^2zx\)

\((x^2y^2-2x^2yz+x^2z^2)+(y^2z^2-2y^2zx+x^2y^2)+(x^2z^2-2yz^2x+y^2z^2)\ge0\)

\(\left(xy-xz\right)^2+\left(xz-yz\right)^2+\left(yz-xy\right)^2\ge0\left(lđ\right)\)

30 tháng 4 2018

Bất đẳng thức Cauchy-Schwarz

\(\frac{xy}{z}+\frac{yz}{x}\ge2y\left(1\right)\)

\(\frac{yz}{x}+\frac{zx}{y}\ge2x\left(2\right)\)

\(\frac{yz}{x}+\frac{zx}{y}\ge2z\left(3\right)\)

Cộng vế (1) ; (2) và (3) và chia mỗi vế cho 2 

\(\Rightarrow\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge x+y+z\left(đpcm\right)\)

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

11 tháng 2 2018

>= and x;y;z>0

Ta có: \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(\Rightarrow\left(x^2+y^2-2xy\right)+\left(y^2+z^2-2yz\right)+\left(x^2+z^2-2xz\right)\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) *đúng*

6 tháng 3 2018

+Cộng 1 vào 2 vế của 3 pt ta được:
(x+1)(y+1)=2
(y+1)(z+1)=4
(z+1)(x+1)=8
Nhân hết 2 phương trình bất kỳ rồi chia cho cái còn lại ta được:
\(\left(x+1\right)^2=\dfrac{2.8}{4}=4\);\(\left(y+1\right)^2=\dfrac{2.4}{8}=1\);\(\left(z+1\right)^2=\dfrac{4.8}{2}=16\)
Do x;y;z không âm nên x= 1; y= 0; z= 3

\(=>A=1+0+3=4\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2017

Lời giải:

Ta có: \(\left\{\begin{matrix} xy+x+y=3\\ yz+y+z=8\\ zx+z+x=15\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x+1)(y+1)=4\\ (y+1)(z+1)=9\\ (z+1)(x+1)=16\end{matrix}\right.(1)\)

Nhân 3 vế với nhau:

\(\Rightarrow [(x+1)(y+1)(z+1)]^2=4.9.16\)

\(\Leftrightarrow (x+1)(y+1)(z+1)=\pm 24\)

Nếu \((x+1)(y+1)(z+1)=24(2)\)

Từ \((1),(2)\Rightarrow \left\{\begin{matrix} z+1=6\\ x+1=\frac{8}{3}\\ y+1=\frac{3}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=\frac{5}{3}\\ y=\frac{1}{2}\\ z=5\end{matrix}\right.\)

Do đó, \(P=x+y+z=\frac{43}{6}\)

Nếu 

\((x+1)(y+1)(z+1)=-24(3)\)

Từ $(1);(3)$ suy ra \(\left\{\begin{matrix} z+1=-6\\ x+1=\frac{-8}{3}\\ y+1=\frac{-3}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} z=-7\\ x=-\frac{11}{3}\\ y=\frac{-5}{2}\end{matrix}\right.\)

Do đó, \(P=x+y+z=-\frac{79}{6}\)

 

14 tháng 4 2018

Thưa thầy. Hình như phải xét 2 trường hợp chứ ạ?