\(\ne\)0 Tính M= \(\frac{yz}{x^2}+\frac{xz}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

làm tương tự bài này nha

x + y + z = 3. Tìm Max P = xy + yz + xz

Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy

hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y 

tương tự: 

+) 2yz ≤ y² + z² +) 2xz ≤ x² + z² 

cộng 3 vế của 3 bđt trên

--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²) 

--> xy + yz + xz ≤ x² + y² + z² 

--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz 

--> 3(xy + yz + xz) ≤ (x + y + z)² 

--> 3(xy + yz + xz) ≤ 3² 

--> xy + yz + xz ≤ 3 

2 tháng 9 2017

Theo đề ta có :

xy + yz + xz = 0 

\(\Rightarrow xy=0-yz-xz=-\left(yz+xz\right)\) (1)

\(\Rightarrow yz=0-xz-xy=-\left(xz+xy\right)\)(2)

\(\Rightarrow xz=0-xy-yz=-\left(xy+yz\right)\)(3)

\(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

Từ (1) ; (2) và (3) , ta có :

\(M=\frac{-\left(xy+xz\right)}{x^2}+\frac{-\left(xy+yz\right)}{y^2}+\frac{-\left(yz+xz\right)}{z^2}\)

\(M=\frac{-x\left(y+z\right)}{x^2}+\frac{-y\left(x+z\right)}{y^2}+\frac{-z\left(x+y\right)}{z^2}\)

\(M=\frac{-\left(y+z\right)}{x}+\frac{-\left(x+z\right)}{y}+\frac{-\left(x+y\right)}{z}\)

\(M-3=\left(\frac{-\left(y+z\right)}{x}-1\right)+\left(\frac{-\left(x+z\right)}{y}-1\right)+\left(\frac{-\left(x+y\right)}{z}-1\right)\)

\(M-3=\left(\frac{-y-z}{x}-\frac{x}{x}\right)+\left(\frac{-x-z}{y}-\frac{y}{y}\right)+\left(\frac{-x-y}{z}-\frac{z}{z}\right)\)

\(M-3=\left(\frac{-y-z-x}{x}\right)+\left(\frac{-x-z-y}{y}\right)+\left(\frac{-x-y-z}{z}\right)\)

\(M-3=\frac{-\left(y+z+x\right)}{x}+\frac{-\left(x+z+y\right)}{y}+\frac{-\left(x+y+z\right)}{z}\)

..............

9 tháng 12 2017

nhân nghịch đảo lên bạn

17 tháng 7 2016

Ta có: 

\(xy+yz+xz=0\)

Chia cả hai vế của đẳng thức trên cho  \(xyz\ne0\), ta được:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

Nhận xét: Chú ý rằng nếu  \(x+y+z=0\)  \(\left(1\right)\) thì  \(x^3+y^3+z^3=3xyz\)  \(\left(\text{*}\right)\)

Thật vậy,  từ   \(\left(1\right)\)  \(\Rightarrow\)  \(z=-\left(x+y\right)\)

Do đó,  \(x^3+y^3+z^3=x^3+y^3-\left(x+y\right)^3=-3x^2y-3xy^2=-3xy\left(x+y\right)=3xyz\)

Vậy, đẳng thức   \(\left(\text{*}\right)\) được chứng minh.

Áp dụng nhận xét trên, ta có:

Nếu  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  thì  \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}=\frac{3}{xyz}\)

Vậy,  \(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)  \(\left(x,y,z\ne0\right)\)

19 tháng 10 2017

Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.

3 tháng 10 2019

1

12 tháng 9 2017

\(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{\left(yz+xz\right)^3+x^3y^3-3xy^2z^3-3x^2yz^3}{x^2y^2z^2}\)

\(=\frac{\left(yz+xz+xy\right)\left[\left(yz+xz\right)^2+xy\left(yz+xz\right)+x^2y^2\right]-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}\)

\(=\frac{0.\left[\left(yz+xz\right)^2+xy\left(yz+xz\right)+x^2y^2\right]-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}\)

\(=\frac{-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}=\frac{-3\left(xz+yz\right)}{xy}=\frac{-3.\left(-xy\right)}{xy}=3\)