Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
- a,(2+xy)^2=4+4xy+x^2y^2
- b,(5-3x)^2=25-30x+9x^2
- d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
bn ơi cs fải đề thế này ko?
\(2xy\left(x^2y-\frac{1}{2}xy\right)-2x^2y\left(xy-\frac{1}{2}y\right)+1\)
\(=\) \(2x^3y^2-x^2y^2-2x^3y^2+x^2y^2+1\)
\(=1\)
Vậy giá trị của biểu thức trên ko phụ thuộc vào biến nên giá trị của biểu thức luôn bằng 1
a) Ta có: \(3x\left(2x-4\right)-\left(6x-1\right)\left(x+2\right)=25\)
\(\Rightarrow6x^2-12x-\left(6x^2+12x-x-2\right)=25\)
\(\Rightarrow6x^2-12x-6x^2-12x+x+2=25\)
\(\Rightarrow-23x+2=25\)
\(\Rightarrow-23x=25-2-23\)
\(\Rightarrow x=23:\left(-23\right)=-1\)
Vậy x = -1
b) \(\left(x^2-2xy+y^2\right)\left(x-y\right)-\left(x-y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)\left(x^2-2xy+y^2-x^2+2xy+y^2\right)\)
\(=\left(x-y\right)2x^2\)
a,
\(\left(x^2-2xy+y^2\right)\left(x-y\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left[\left(x^2-2xy+y^2\right)\left(x-y\right)\right]-\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\)
\(=\left[\left(x-y\right)^2\left(x-y\right)\right]-\left(x-y\right)^3\)
\(=\left(x-y\right)^3-\left(x-y\right)^3\)
\(=0\)
x 2 +y 2 xy = 8 5 ⇒x 2 +y 2 = 5 8xy \Rightarrow P=\frac{\frac{8xy}{5}-2xy}{\frac{8xy}{5}+2xy}=\frac{8xy-10xy}{8xy+10xy}=\frac{-2}{18}=-\frac{1}{9}⇒P= 5 8xy +2xy 5 8xy −2xy = 8xy+10xy 8xy−10xy = 18 −2 =− 9 1