\(x,y,x>0\) và\(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Áp dụng BĐT Cô-si ta có:

\(2x^2+3xy+4y^2\ge3\sqrt[3]{2x^2\cdot3xy\cdot4y^2}=3\sqrt[3]{24x^3y^3}\Rightarrow\sqrt{2x^2+3xy+4y^2}\ge\sqrt{xy\cdot3\sqrt[3]{24}}\)

Tương tự: \(\sqrt{2y^2+3yz+4z^2}\ge\sqrt{yz\cdot3\sqrt[3]{24}}\);  \(\sqrt{2z^2+3zx+4x^2}\ge\sqrt{zx\cdot3\sqrt[3]{24}}\)

Cộng theo vế 3 BĐT vừa tìm, ta được:

\(P\ge\sqrt{3\sqrt[3]{24}}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\sqrt{3\sqrt[3]{24}}=\sqrt[6]{648}\)

27 tháng 6 2017

Xem lại đề .
Có lẽ là 2x^2+3xy+2y^2 ((:

3 tháng 8 2019

Xét nào:)

Từ giả thiết suy ra x + y + z > 3

Ta có: \(P=2x^2+xy+2y^2=\frac{5}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2\ge\frac{5}{4}\left(x+y\right)^2\)

Suy ra \(\sqrt{2x^2+xy+y^2}\ge\sqrt{\frac{5}{4}}.\left(x+y\right)=\frac{\sqrt{5}}{2}\left(x+y\right)\)

Tương tự hai BĐT còn lại và cộng theo vế: \(P\ge\sqrt{5}\left(x+y+z\right)\ge3\sqrt{5}\)

Đẳng thức xảy ra khi x = y = z = 1

Is it right?!?

3 tháng 8 2019

thank ban

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô

31 tháng 7 2019

Ta có \(\frac{\sqrt{x^2+2y^2}}{xy}=\sqrt{\frac{1}{y^2}+\frac{2}{x^2}}\)

Áp dụng BĐT Buniacoxki ta có 

\(\sqrt{\left(\frac{1}{y^2}+\frac{2}{x^2}\right)\left(1+2\right)}\ge\sqrt{\left(\frac{1}{y}+\frac{2}{x}\right)^2}=\frac{1}{y}+\frac{2}{x}\)

=> \(\sqrt{3}A\ge3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3\)

=> \(A\ge\sqrt{3}\)

\(MinA=\sqrt{3}\)khi x=y=z=3

10 tháng 12 2016

xài mincopxki đi bn h mk bận ko giải dc

19 tháng 11 2015

gọi P là cái 1/x+1/y+1/z nha

1) (1/x+1/y+1/z)^2 = 1/x^2 + 1/y^2 + 1/z^2 + 2/(xy) + 2/(yz) + 2/(zx) 
---> 3 = P + 2(x+y+z)/(xyz) = P + 2 ---> P = 1 

19 tháng 11 2015

bạn giải đi rùi mình tick cho

3 tháng 9 2018

hình như thiếu cái gì đó

Đề bài đủ rồi bạn nhé.

14 tháng 5 2017

thử x=y=z=1/3 thấy ngay sai đề

15 tháng 5 2017

Áp dụng BĐT AM-GM ta có:

\(x^2+y^2\ge2xy\Rightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy=\left(x+y\right)^2\)

\(\Rightarrow\sqrt{2x^2+xy+2y^2}=\sqrt{\dfrac{\left(x+y\right)^2}{2}+\dfrac{3\left(x^2+y^2\right)}{2}}\)

\(\ge\sqrt{\dfrac{5\left(x+y\right)^2}{4}}=\dfrac{\sqrt{5}\left(x+y\right)}{2}\). Tương tự ta có:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}\left(y+z\right)}{2};\sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}\left(x+z\right)}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{\sqrt{5}\left(x+y\right)}{2}+\dfrac{\sqrt{5}\left(y+z\right)}{2}+\dfrac{\sqrt{5}\left(x+z\right)}{2}\)

\(=\dfrac{\sqrt{5}\cdot2\left(x+y+z\right)}{2}=\dfrac{\sqrt{5}\cdot2}{2}=\sqrt{5}=VP\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)\(\Leftrightarrow x^5-x^2\ge3x-3\)cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)áp dụng bunhia ta...
Đọc tiếp

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)

ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)

\(\Leftrightarrow x^5-x^2\ge3x-3\)

cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)

\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)

\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)

áp dụng bunhia ta có:

\(3\left(x+xy+1\right)\ge\left(\sqrt{x}+\sqrt{xy}+1\right)^2\)

cmtt\(\Rightarrow P\le\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}\)

đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\)

\(\Rightarrow\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}=\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}\)

\(=\frac{abc}{a+ab+abc}+\frac{1}{b+bc+1}+\frac{b}{bc+abc+b}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=1\)

\(\Rightarrow P\le1\)

2
28 tháng 8 2017

Bạn làm đúng rồi

28 tháng 8 2017

mình học lớp 9 cho tớ hỏi sửa lớp ở đâu