Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ap dụng tính chất tỉ lệ thức ta có
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Nên ta có
\(1+\frac{x}{y}=\left(1+\frac{y+z-x}{y}\right)=\frac{2z}{y}\)
\(1+\frac{y}{z}=1+\frac{y}{z}=\frac{2x}{z}\)
\(1+\frac{z}{x}=\frac{2y}{x}\)
Chỗ này mình làm hơi tắt nên tự hiệu nhé
\(\Rightarrow\frac{2z}{y}\cdot\frac{2y}{x}\cdot\frac{2x}{z}=\frac{8xyz}{xyz}=8\)
Ta có: \(\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\)\(\hept{\begin{cases}x=y+z-x\\y=z+x-y\\z=x+y-z\end{cases}}\)(1)
Thế (1) vào M ta được:
\(M=\left(\frac{z+x-y}{x}+1\right)\left(\frac{y+z-x}{z}+1\right)\left(\frac{x+y-z}{y}+1\right)\)
\(M=\left(\frac{z+x-y+y+z-x}{x}\right)\left(\frac{y+z-x+x+y-z}{z}\right)\left(\frac{x+y-z+z+x-y}{y}\right)\)
\(M=\frac{2x\cdot2y\cdot2z}{xyz}=\frac{8xyz}{xyz}=8\)
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\) = \(\frac{x+y+z}{x+y+z}=1\)
=> \(x=y=z\)
\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+\frac{x}{x}\right)=\left(1+\frac{y}{y}\right)=\left(1+\frac{z}{z}\right)\)\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(\Rightarrow x=y=z\)
\(\Rightarrow\frac{x}{y}=1;\frac{y}{z}=1;\frac{z}{x}=1\)
\(\Rightarrow B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2^3=8\)
Lời giải:
Ta có:
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+z\right).\left(y+x\right).\left(z+y\right)}{xyz}\)
+) Nếu .\(x+y+z\ne0\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(=\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(..............\)
xét 2 t hợp
th1: a+b+c=0
th2:a+b+c khác 0
bài này dài lắm nếu cần thiết thì mình giải cho
Vì x,y,z khác 0 nên không xét TH x+y+z=0 được!
Do đó x+y+z phải khác 0
Theo t/c dãy tỉ số=nhau:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+x}{x+y+z}=1\)
Suy ra \(y+z-x=x=>y+z=2x\)
\(z+x-y=y=>z+x=2y\)
\(x+y-z=z=>x+y=2z\)
Vậy \(M=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{x}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{x+y}{x}.\frac{z+x}{x}=\frac{2z}{y}.\frac{2z}{x}.\frac{2y}{x}=\frac{8z^2y}{x^2y}=\frac{8z^2}{x^2}\)
bn nên xem lại đề