\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

xét 2 t hợp

th1: a+b+c=0

th2:a+b+c khác 0

bài này dài lắm nếu cần thiết thì mình giải cho

2 tháng 8 2016

Vì x,y,z khác 0 nên không xét TH x+y+z=0 được!

Do đó x+y+z phải khác 0

Theo t/c dãy tỉ số=nhau:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+x}{x+y+z}=1\)

Suy ra \(y+z-x=x=>y+z=2x\)

 \(z+x-y=y=>z+x=2y\)

\(x+y-z=z=>x+y=2z\)

Vậy \(M=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{x}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{x+y}{x}.\frac{z+x}{x}=\frac{2z}{y}.\frac{2z}{x}.\frac{2y}{x}=\frac{8z^2y}{x^2y}=\frac{8z^2}{x^2}\)

bn nên xem lại đề

25 tháng 10 2019

Hình như

25 tháng 10 2019

Ap dụng tính chất tỉ lệ thức ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Nên ta có

\(1+\frac{x}{y}=\left(1+\frac{y+z-x}{y}\right)=\frac{2z}{y}\)

\(1+\frac{y}{z}=1+\frac{y}{z}=\frac{2x}{z}\)

\(1+\frac{z}{x}=\frac{2y}{x}\)

Chỗ này mình làm hơi tắt nên tự hiệu nhé

\(\Rightarrow\frac{2z}{y}\cdot\frac{2y}{x}\cdot\frac{2x}{z}=\frac{8xyz}{xyz}=8\)

3 tháng 1 2018

Ta có: \(\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\)\(\hept{\begin{cases}x=y+z-x\\y=z+x-y\\z=x+y-z\end{cases}}\)(1)

Thế (1) vào M ta được:

\(M=\left(\frac{z+x-y}{x}+1\right)\left(\frac{y+z-x}{z}+1\right)\left(\frac{x+y-z}{y}+1\right)\)

\(M=\left(\frac{z+x-y+y+z-x}{x}\right)\left(\frac{y+z-x+x+y-z}{z}\right)\left(\frac{x+y-z+z+x-y}{y}\right)\)

\(M=\frac{2x\cdot2y\cdot2z}{xyz}=\frac{8xyz}{xyz}=8\)

6 tháng 1 2017

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}\) = \(\frac{x+y+z}{x+y+z}=1\)

=> \(x=y=z\)

\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+\frac{x}{x}\right)=\left(1+\frac{y}{y}\right)=\left(1+\frac{z}{z}\right)\)\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)

5 tháng 2 2017

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(\Rightarrow x=y=z\)

\(\Rightarrow\frac{x}{y}=1;\frac{y}{z}=1;\frac{z}{x}=1\)

\(\Rightarrow B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2^3=8\)

26 tháng 10 2017

Bexiu2k5 là tên đăng nhập -.-

26 tháng 10 2017

Lời giải:

Ta có:

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+z\right).\left(y+x\right).\left(z+y\right)}{xyz}\)

+) Nếu .\(x+y+z\ne0\)

Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(=\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(..............\)