Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo gt: x2 +y2 ≤ 2 (x + 2y) x2 + y2 ≤ 2(x + 2y)
Ta có: (x + 2y)2 ≤ (12 + 22)(x2 + y2) ≤ 5.2(x + 2y)(x + 2y)2 ≤ (12 + 22)(x2+y2) ≤ 5.2(x+2y)
⇒ x + 2y ≤ 10 ⇒ x + 2y ≤ 10 (đpcm)
\(gt\Rightarrow x^2+y^2\le2\left(x+2y\right)\)
Áp dụng Bđt Bunhia
\(\left(x+2y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)\le5\cdot2\left(x+2y\right)\)
\(\Rightarrow x+2y\le10\)
Dpcm
\(x^3+y^3=2x^2y^2\Rightarrow\)\(\left(x^3+y^3\right)^2=4x^4y^4\Rightarrow x^6+2x^3y^3+y^6=4x^4y^4\)\(\Rightarrow x^6+2x^3y^3+y^6-4x^3y^3=4x^4y^4-4x^3y^3\)\(\Rightarrow\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)
\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\)\(\frac{\left|x^3-y^3\right|}{2x^2y^2}\)mà x:y hữu tie suy ra điều phải cm
Cái bài này bạn làm ra chưa:
\(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge2\left(\sqrt{\frac{c}{a+b}}+\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}\right)\)
Ta có:
\(x^2+x^2y^2-2y=0\)
\(\Leftrightarrow x^2=\frac{2y}{y^2+1}\le1\)(cái này chứng minh đơn giản b tự làm lấy nhé)
\(\Leftrightarrow-1\le x\le1\left(1\right)\)
Ta lại có:
\(x^3+2y^2-4y+3=0\)
\(\Leftrightarrow x^3=-1-2\left(y-1\right)^2\le-1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x=-1\)
\(\Rightarrow y=1\)
\(\Rightarrow x^2+y^2=1+1=2\)
TH 1: \(x^2+y^2< 1\)
\(\Rightarrow\hept{\begin{cases}|x|< 1\\|y|< 1\end{cases}}\)
\(\Rightarrow S=x+2y\le\sqrt{2\left(x^2+y^2\right)}+y< 1+\sqrt{2}\left(1\right)\)
TH 2: \(x^2+y^2>1\)
\(\Rightarrow x^2-x+y^2-y\le0\)
\(\Leftrightarrow\left(S-2y\right)^2-\left(S-2y\right)+y^2-y\le0\)
\(\Leftrightarrow5y^2+\left(1-4S\right)y+S^2-S\le0\)
\(\Rightarrow\Delta=\left(1-4S\right)^2-4.5.\left(S^2-S\right)\ge0\)
\(\Leftrightarrow S\le\frac{5+\sqrt{10}}{2}\left(2\right)\)
Từ (1) và (2) suy ra được GTLN của S
PS: S là đặt cho nó gọn nhé
Ta có:
\(x^2+y^2-2xy+2x-4y+15=0\)
\(\Rightarrow\hept{\begin{cases}x^2-\left(2y-2\right)x+y^2-4y+15=0\\y^2-\left(2x+4\right)+x^2+2x+15=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\Delta'_x=\left(y-1\right)^2-\left(y^2-4y+15\right)\ge0\\\Delta'_y=\left(x+2\right)^2-\left(x^2+2x+15\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y\ge7\\x\ge\frac{11}{2}\end{cases}}\)
\(\Rightarrow4x^2+y^2\ge4.\left(\frac{11}{2}\right)^2+7^2=170\)
Dễ thấy dấu = không xảy ra nên
\(\Rightarrow4x^2+y^2>170\)