\(x;y;t\ge0\)

Tìm x;y;t sao cho: \(4x-y^2=4y-t^2=4t-x^2=1\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2020

Vũ Minh Tuấn, buithianhtho, Băng Băng 2k6, Akai Haruma, Nguyễn Thành Trương, No choice teen, Nguyễn Thanh Hằng, HISINOMA KINIMADO, Bùi Thị Vân, Arakawa Whiter, @tth_new, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ

mn giúp e vs ạ! Thanks nhiều!

23 tháng 1 2020

Nghỉ tết r học chăm thế

NV
13 tháng 6 2019

\(M=\frac{2\sqrt{y}}{x-y}+\frac{\sqrt{x}+\sqrt{y}}{x-y}+\frac{\sqrt{x}-\sqrt{y}}{x-y}=\frac{2\sqrt{y}+\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}}{x-y}=\frac{2\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{2}{\sqrt{x}-\sqrt{y}}\)

b/ Khi \(x=4y\) và M=1

\(\Leftrightarrow\frac{2}{\sqrt{4y}-\sqrt{y}}=1\Leftrightarrow\frac{2}{2\sqrt{y}-\sqrt{y}}=1\Leftrightarrow\frac{2}{\sqrt{y}}=1\)

\(\Leftrightarrow\sqrt{y}=2\Rightarrow y=4\Rightarrow x=16\)

NV
12 tháng 1 2024

\(x^2+3y^2+4x+10y-14=0\)

\(\Leftrightarrow\left(x+2\right)^2+3y^2+10y=18\) (1)

\(\Rightarrow3y^2+10y\le18\)

\(\Rightarrow2y^2+8y\le3y^2+10y\le18\)

\(\Rightarrow2y^2+8y+8\le26\)

\(\Rightarrow\left(y+2\right)^2\le13\) 

Mà \(y\) nguyên và \(y\ge0\) \(\Rightarrow y=\left\{0;1\right\}\) 

- Với \(y=0\) thay vào (1) \(\Rightarrow\left(x+2\right)^2=18\) ko tồn tại x nguyên thỏa mãn

- Với \(y=1\) thay vào (1) \(\Rightarrow\left(x+2\right)^2+13=18\Rightarrow\left(x+2\right)^2=5\)  không tồn tại x nguyên thỏa mãn

Vậy ko tồn tại các số nguyên không âm x; y thỏa mãn

NV
14 tháng 4 2020

\(x^2+y^2=1\Leftrightarrow0\le x;y\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^3\le x^2\\y^3\le y^2\end{matrix}\right.\) \(\Rightarrow P\le x^2+y^2=1\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)