Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\forall x\in R\)
Dấu "=" xảy ra khi\(2x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{6}\)
\(B=-2\left(x-3\right)^2-\dfrac{7}{11}\left|3y+7\right|-2011\ge-2011\forall x,y\in R\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-3=0\\3y+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-\dfrac{7}{3}\end{matrix}\right.\)
\(C=\left|2x+1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}2x+1=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)
=>(2x-1)(x-2)(x+1)<>0
hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)
b: ĐKXĐ: x+5<>0
=>x<>-5
c: ĐKXĐ: x4-1<>0
hay \(x\notin\left\{1;-1\right\}\)
d: ĐKXĐ: \(x^4+2x^2-3< >0\)
=>\(x\notin\left\{1;-1\right\}\)
Ta có: \(4xy\le\left(x+y\right)^2\le1\)
\(\Leftrightarrow xy\le\dfrac{1}{4}\)
\(A=\left(1+\dfrac{1}{x^2}\right)\left(1+\dfrac{1}{y^2}\right)\)
\(=\left(1+\dfrac{1}{4x^2}+\dfrac{1}{4x^2}+\dfrac{1}{4x^2}+\dfrac{1}{4x^2}\right)\left(1+\dfrac{1}{4y^2}+\dfrac{1}{4y^2}+\dfrac{1}{4y^2}+\dfrac{1}{4y^2}\right)\)
\(\ge5\sqrt[5]{\dfrac{1}{4^4x^8}}.5\sqrt[5]{\dfrac{1}{4^4y^8}}\)
\(=25\sqrt[5]{\dfrac{1}{4^8}.\dfrac{1}{\left(xy\right)^8}}\ge25\sqrt[5]{\dfrac{1}{4^8}.\dfrac{1}{\left(\dfrac{1}{4}\right)^8}}=25\)