Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))
Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) .
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0
Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)
\(\frac{x}{x^2-yz+2013}+\frac{y}{y^2-zx+2013}+\frac{z}{z^2-xy+2013}\)
\(=\frac{1}{\frac{x^2-yz+2013}{x}}+\frac{1}{\frac{y^2-zx+2013}{y}}+\frac{1}{\frac{z^2-xy+2013}{z}}\)
\(=\frac{1}{x+3y+3z+\frac{2yz}{x}}+\frac{1}{y+3z+3x+\frac{2xz}{y}}+\frac{1}{z+3x+3y+\frac{2xy}{z}}\)
\(\ge\frac{9}{7\left(x+y+z\right)+2xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\ge\frac{9}{7\left(x+y+z\right)+2xyz\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}=\)
\(=\frac{9}{7\left(x+y+z\right)+2xyz.\frac{1}{xyz}.\left(x+y+z\right)}=\frac{9}{9\left(x+y+z\right)}=\frac{1}{x+y+z}\)
Ta có đpcm
bó tay rùi bạn !!!! ~_~
65756578687696453724756545345363637635754754695622534434
Mình trình bày bạn xem đúng không nhé:
\(x^2+y^2=\left(x+y\right)^2-2xy\le1-2xy\)
\(\Rightarrow A\ge\frac{1}{1-2xy}+\frac{1}{2xy}\Rightarrow A\ge\frac{1}{\left(1-2xy\right)2xy}\)
Áp dụng BĐT Cauchy \(\sqrt{\left(1-2xy\right)2xy}\le\frac{1-2xy+2xy}{2}=\frac{1}{2}\Rightarrow\left(1-2xy\right)2xy\le\frac{1}{4}\)
\(A\ge4\) Vậy min A = 4 khi x + y = 1 và 1 - 2xy = 2xy tức là x = y = 1/2 bạn nhé
Điều kiện \(\hept{\begin{cases}x-2011>0\\y-2012>0\\z-2013>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2011\\y>2012\\z>2013\end{cases}}}\)
\(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{\sqrt{x-2011}}-\frac{1}{x-2011}+\frac{1}{\sqrt{y-2012}}-\frac{1}{y-2012}+\frac{1}{\sqrt{z-2013}}-\frac{1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\left(\frac{1}{x-2011}-\frac{1}{\sqrt{x-2011}}+\frac{1}{4}\right)+\left(\frac{1}{y-2012}-\frac{1}{\sqrt{y-2012}}+\frac{1}{4}\right)+\left(\frac{1}{z-2013}-\frac{1}{\sqrt{z-2013}}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2011}}-\frac{1}{4}\right)^2+\left(\frac{1}{\sqrt{y-2012}}-\frac{1}{4}\right)^2+\left(\frac{1}{\sqrt{z-2013}}-\frac{1}{4}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-2011}}=\frac{1}{4}\\\frac{1}{\sqrt{y-2012}}=\frac{1}{4}\\\frac{1}{\sqrt{z-2013}}=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2011=16\\y-2012=16\\z-2013=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2027\\y=2028\\z=2029\end{cases}}}\)
\(M=\frac{4}{x}+y=1\left(\frac{4}{x}+y\right)\ge\left(x+\frac{1}{y}\right)\left(\frac{4}{x}+y\right)\)
\(=4+xy+\frac{4}{xy}+1\ge4+2\sqrt{xy.\frac{4}{xy}}+1=4+2\sqrt{4}+1=9\)
Nên GTNN của M là 9 khi \(x=\frac{2}{3};y=3\)
ĐK phải có thêm x,y>0 nữa chứ nhỉ
\(E=\frac{2013}{x}+\frac{1}{2013y}=\left(\frac{2013}{x}+2013x\right)+\left(\frac{1}{2013y}+2013y\right)-2013\left(x+y\right)\)
\(=\left(\frac{2013}{x}+2013x\right)+\left(\frac{1}{2013y}+2013y\right)-2013\cdot\frac{2014}{2013}\)
\(=\left(\frac{2013}{x}+2013x\right)+\left(\frac{1}{2013y}+2013y\right)-2014\)
Áp dụng bđt cô si ta có:
\(\frac{2013}{x}+2013x\ge2\sqrt{\frac{2013}{x}\cdot2013x}=2\cdot2013=4026\)
\(\frac{1}{2013y}+2013y\ge2\sqrt{\frac{1}{2013y}\cdot2013y}=2\)
Suy ra \(E\ge4026+2-2014=2014\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{2013}{x}=2013x\\\frac{1}{2013y}=2013y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2013}\end{cases}}\)
Vậy...
Cảm ơn bạn nha