\(x,y\ge0\)và \(x^2+y^2=1\). CMR \(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2015

Vế 1:

\(x^3+y^3\ge\frac{1}{\sqrt{2}}\)

Áp dụng bất đẳng thức Côsi: \(x^3+x^3+\left(\frac{1}{\sqrt{2}}\right)^3\ge3\sqrt[3]{x^3.x^3.\left(\frac{1}{\sqrt{2}}\right)^3}=\frac{3}{\sqrt{2}}x^2\)

Tương tự: \(y^3+y^3+\left(\frac{1}{\sqrt{2}}\right)^3\ge\frac{3}{\sqrt{2}}y^2\)

\(\Rightarrow2x^3+2y^3+2.\left(\frac{1}{\sqrt{2}}\right)^3\ge\frac{3}{\sqrt{2}}\left(x^2+y^2\right)=\frac{3}{\sqrt{2}}\)

\(\Rightarrow x^3+y^3\ge\)\(\frac{1}{2}\left(\frac{3}{\sqrt{2}}-\frac{2}{2\sqrt{2}}\right)=\frac{1}{\sqrt{2}}\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{\sqrt{2}}\)

Vế 2: \(x^3+y^3\le1\)

\(x^2+y^2=1\) \(\Rightarrow x\le1;y\le1\)\(\Rightarrow x^3\le x^2;y^3\le y^2\)

\(\Rightarrow x^3+y^3\le x^2+y^2=1\)

Dấu "=" xảy ra khi \(x=0;y=1\) hoặc \(x=1;y=0\)

24 tháng 5 2017

Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn

24 tháng 5 2017

bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x) 

VT (ở đề bài) = a+b+c 

<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0

từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r 

9 tháng 6 2017

Vì \(0\le x,y,z\le1\)

\(\Rightarrow xy\le y\)

\(x^2\le1\)

\(\Rightarrow x^2+xy+xz\le xz+y+1\)

\(\Leftrightarrow x\left(x+y+z\right)\le1+y+xz\)

\(\Leftrightarrow\)\(\frac{x}{1+y+xz}\le\frac{1}{x+y+z}\)

CMTT : các vế khác cug vậy

cộng các vế vào là đc

20 tháng 1 2018

\(0\le x;y;z\le1\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow xy-x-y+1\ge0\)

\(\Rightarrow xy+1\ge x+y\)

Tương tự ta chứng minh được \(xz+1\ge x+z\)và \(yz+1\ge y+z\)

\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{1}{x+y+z}\)(\(x\le1\))

\(\Rightarrow\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\le\frac{1}{x+y+z}\)(\(y\le1\))

\(\Rightarrow\frac{z}{1+x+yz}\le\frac{z}{x+y+z}\le\frac{1}{x+y+z}\)\(z\le1\))

\(\Rightarrow\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)(đpcm)

15 tháng 5 2018

Do \(0\le x,y,z\le1\)\(\Rightarrow x\ge x^2;y\ge y^2;z\ge z^2\)

\(\Rightarrow\left(x-1\right)\left(z-1\right)\ge0\Rightarrow xz-x-z+1\ge0\Rightarrow xz+y+1\ge x+y+z\ge x^2+y^2+z^2\) 

\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{x}{x^2+y^2+z^2}\) 

Tương tự rồi cộng từng vế, ta có:  

\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{3}{x+y+z}\) 

=> ĐPCM