\(\ge0\); \(x^2+y^2=2\). Tìm min,max A=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 12 2021

\(A=\dfrac{x^3+y^3+4}{xy+1}\ge\dfrac{x^3+y^3+4}{\dfrac{x^2+y^2}{2}+1}=\dfrac{x^3+y^3+4}{2}=\dfrac{\dfrac{1}{2}\left(x^3+x^3+1\right)+\dfrac{1}{2}\left(y^3+y^3+1\right)+3}{2}\)

\(\ge\dfrac{\dfrac{3}{2}\left(x^2+y^2\right)+3}{2}=3\)

\(A_{min}=3\) khi \(x=y=1\)

Do \(x^2+y^2=2\Rightarrow\left\{{}\begin{matrix}x\le\sqrt{2}\\y\le\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^3\le\sqrt{2}x^2\\y^3\le\sqrt{2}y^2\end{matrix}\right.\)

\(\Rightarrow A\le\dfrac{\sqrt{2}\left(x^2+y^2\right)+4}{xy+1}=\dfrac{4+2\sqrt{2}}{xy+1}\le\dfrac{4+2\sqrt{2}}{1}=4+2\sqrt{2}\)

\(A_{max}=4+2\sqrt{2}\) khi \(\left(x;y\right)=\left(0;\sqrt{2}\right);\left(\sqrt{2};0\right)\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

12 tháng 5 2019

Áp dụng BĐT Cauchy-Schwarz ta có:

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Rightarrow x+y\le\sqrt{2}\)

\(A=x^3+y^3=\frac{x^4}{x}+\frac{y^4}{y}\ge\frac{\left(x^2+y^2\right)^2}{x+y}\ge\frac{1}{\sqrt{2}}\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x^2+y^2=1\end{cases}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}}\)

Vậy \(A_{min}=\frac{1}{\sqrt{2}}\)khi \(x=y=\frac{1}{\sqrt{2}}\)

Từ giả thuyết suy ra:\(0\le x^2,y^2\le1\Rightarrow\hept{\begin{cases}x^3\le x\\y^3\le y\end{cases}}\)

\(A=x^3+y^3\le x+y\le\sqrt{2}\)

Dấu '=' xảy ra khi \(x=y=\frac{1}{\sqrt[3]{\sqrt{2}}}\)

Vậ5y \(A_{max}=\sqrt{2}\)khi \(x=y=\frac{1}{\sqrt[3]{\sqrt{2}}}\)

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

21 tháng 4 2020

\(\hept{\begin{cases}x+y\le2\\x^2+y^2+xy=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=2-a\\x^2+y^2+xy=3\end{cases}\left(a\ge0\right)}}\)

Do đó: \(\hept{\begin{cases}x+y=2-a\\xy=\left(2-a\right)^2-3\end{cases}}\)

Điều kiện có nghiệm là: \(\Delta=S^2-4P\ge0\)và a>=0 nên 0 =<a =< 4

Ta có: \(T=x^2+y^2+xy-2xy=9-2\left(2-a\right)^2\)

=> \(Min_T=1\)khi x=1 và y=1 hoặc x=-1; y=-1

\(Max_T=9\)khi \(x=\sqrt{3};y=-\sqrt{3}\)hoặc \(x=-\sqrt{3};y=\sqrt{3}\)

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)

b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)

c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+2-\sqrt{x}-2=0\)