Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x+y=a+b
(x+y)2=(a+b)2
x2+2xy+y2=a2+2ab+b2
Mà x2+y2=a2+b2
Suy ra 2xy=2ab
Suy ra xy=ab
a2-ab+b2=x2-xy+y2
(a+b)(a2-ab+b2)=(x+y)(x2-xy+y2)
a3+b3=x3+y3
1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)
\(A=x^3+y^3+3xy=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1+0=1\)
\(B=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1\)
\(c,M=a^2-ab+b^2+3ab\left(a^2+b^2\right)+6a^2b^2=3ab\left(a^2+2ab+b^2\right)+a^2-ab+b^2\)
\(=3ab+a^2-ab+b^2=\left(a+b\right)^2=1\)
\(x+y=2;x^2+y^2=10\text{ do đó:}xy=-3\text{ nên }\left(x-y\right)^2=16\text{ do đó: }x-y=4\text{ hoặc }x-y=-4\)
\(\text{giải ra được:}x=3;y=-1\text{ hoặc ngược lại nên }x^3+y^3=-26\text{ hoặc }26\)
A = x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2 + 3xy2 + y3 ) - ( 3x2y + 3xy - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 13 - 3xy.0
= 1 - 0 = 1
Vậy A = 1
b) B = x3 - y3 - 3xy
= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )
= ( x - y )3 + 3xy( x - y - 1 )
= 13 + 3xy( 1 - 1 )
= 1 + 3xy.0
= 1 + 0 = 1
Vậy B = 1
M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )
= ( a + b )( a2 - ab + b2 ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= ( a + b )[ ( a + b )2 - 3ab ] + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= 1.( 1 - 3ab ) + 3ab( 1 - 2ab ) + 6a2b2.1
= 1 - 3ab + 3ab - 6a2b2 + 6a2b2
= 1
Vậy M = 1
d) x + y = 2
⇔ ( x + y )2 = 4
⇔ x2 + 2xy + y2 = 4
⇔ 10 + 2xy = 4 ( gt x2 + y2 = 10 )
⇔ 2xy = -6
⇔ xy = -3
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 23 - 3.(-3).(2)
= 8 + 18 = 26
a)Ta có vế trái:
\(\left(x^2-xy+y^2\right)\left(x+y\right)\\ =x^3+x^2y-x^2y-xy^2+xy^2+y^3\\ =x^3+y^3\)
Theo bài ra ⇒ VT=VP
⇒\(\left(x^2-xy+y^2\right)\left(x+y\right)\)
b)Tương tự
\(a^3=\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)
\(3ab=3\left(x+y\right)\left(x^2+y^2\right)=3\left(x^3+x^2y+xy^2+y^3\right)\)
\(2c=2x^3+2y^3\)
\(a^3-3ab+2c=\left(x^3+y^3-3x^2-3y^2+2x^3+2y^3\right)+3\left(x^2y-xy^2+xy^2-xy^2\right)=0\)
a) Ta có :
\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)
b) Ta có :
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Rightarrow a^2+b^2+2ab=a^2+b^2+a^2+b^2\)
\(\Rightarrow a^2+b^2=2ab\)
\(\Rightarrow a^2+b^2-2ab=0\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a-b=0\)
\(\Rightarrow a=b\)
Vậy ...
Ta có :
\(a^2=\left(x+y\right)^2=x^2+y^2+2xy=x^2+y^2+2b\)
\(\Rightarrow x^2+y^2=a^2-2b\)
\(a^4=\left(x+y\right)^4=x^4+C_4^1x^3y+C_4^2x^2y^2+C_4^3xy^3+y^4\)
\(\Rightarrow a^4=x^4+y^4+4x^3y+6x^2y^2+4xy^3\)
\(\Rightarrow a^4=x^4+y^4+2xy\left(2x^2+3xy+2y^2\right)\)
\(=x^4+y^4+2b\left[3b+2\left(x^2+y^2\right)\right]\)
\(=x^4+y^4+2b\left[3b+2\left(a^2-2b\right)\right]\)
\(=x^4+y^4+6b^2+4a^2b-8b\)
\(\Rightarrow x^4+y^4=a^4-\left(6b^2+4a^2b-8b\right)\)
\(=a^4-4a^2b-6b^2+8b\)
Ta có: (x+y)2=x2+y2+2xy
<=>(a+b)2=a2+b2+2xy
<=>a2+b2+2ab=a2+b2+2xy
<=>xy=ab
Suy ra: x3+y3=(x+y)(x2+y2-xy)=(a+b)(a2+b2-ab)=a3+b3
=>dpcm
Ta có: (x+y)2=x2+y2+2xy
<=>(a+b)2=a2+b2+2xy
<=>a2+b2+2ab=a2+b2+2xy
<=>xy=ab
Suy ra: x3+y3=(x+y)(x2+y2-xy)=(a+b)(a2+b2-ab)=a3+b3
=>dpcm