K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2015

còn ko thì bấm vào chữ xanh

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

27 tháng 7 2019

\(x-y=1\Rightarrow x^2-2xy+y^2=1\Rightarrow x^2+xy+y^2=19\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1.19=19\)

\(2,a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0ma:\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow a=b=c\)

27 tháng 7 2019

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)=4a^2b^2+4c^2a^2+4b^2c^2\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=\left(a^2+b^2+c^2\right)^2\left(dpcm\right)\)

1 tháng 2 2020

a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5

=x^5-y^5=VP

=>dpcm

25 tháng 7 2018

Ta có:\(x+y=a+b\Leftrightarrow\left(x+y\right)^2=\left(a+b\right)^2\Leftrightarrow x^2+2xy+y^2=a^2+2ab+b^2\Leftrightarrow2xy=2ab\Leftrightarrow xy=ab\) (vì x2+y2=a2+b2)

Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right);a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Mà x+y=a+b,x2+y2=a2+b2;xy=ab

Do đó \(x^3+y^3=a^3+b^3\) (đpcm)

3 tháng 7 2015

Từ x+y=a x2+y2=b x3+y3=c

=>a3+2c=(x+y)3+2x3+2y3=x3+3x2y+3xy2+y3+2x3+2y3=3(x3+y3+x2y+xy2)(1)

3ab=3(x+y)(x2+y2)=3(x3+y3+x2y+xy2)(2)

Từ 1 và 2 =>a3+2c=3ab(ĐPCM)

nhìn zậy thoy chứ dễ lắm mik làm vd 2 bài còn lại bn làm có gì bí thì hỏi mik

a) biến đổi vế trái ta có : \(\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)\)( = vế phải )

b) BĐVT ta có : \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2\)= VP

 

30 tháng 10 2020

Không có mô tả.

30 tháng 10 2020

a) Ta có: \(VP=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=VP\)(đpcm)

b) Ta có: \(VT=\left(a-b\right)\left(a^2+b^2+ab\right)-\left(a+b\right)\left(a^2+b^2-ab\right)\)

\(=a^3-b^3-\left(a^3+b^3\right)\)

\(=a^3-b^3-a^3-b^3\)

\(=-2b^3=VP\)(đpcm)