Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 3x2 - 2x + 3y2 - 2y + 6xy - 100
= (3x2 + 6xy + 3y2) - (2x + 2y) - 100
= 3(x2 + 2xy + y2) - 2(x + y) - 100
= 3(x + y)2 - 2.5 - 100
= 3. 52 -10 - 100
= 75 - 10 - 100 = -35
Q = x3 + y3 - 2x2 - 2y2 + 3xy(x + y) - 4xy + 3(x+y) +10
= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3.5 + 10
= (x3 + 3x2y + 3xy2 + y3) - (2x2 + 4xy + 2y2) + 15 + 10
= (x + y)3 - 2(x2 + 2xy + y2) + 25
= 53 - 2(x + y)2 +25
= 125 - 2. 52 + 25
= 125 - 50 + 25 = 100
\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+3\left(x+y\right)-3\left(x^2+2xy+y^2\right)+2016\)
\(=\left(x+y\right)^3+3\left(x+y\right)-3\left(x+y\right)^2+2016\)
\(=21^3+3.21-3.21^2+2016\)
\(=\left(21-1\right)^3+2017=8000+2017=10017\)
Mình không viết lại đề nha ~
\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+\left(3y+3x\right)+\left(3x^2+6xy+3y^2\right)+2016\)
\(E=\left(x+y\right)^3+3\left(x+y\right)+3\left(x+y\right)^2+2016\)
\(E=\left(x+y\right)[\left(x+y\right)^2+3+\left(x+y\right)]+2016\)
\(E=21\left(21^2+3+21\right)+2016\)
\(E=21.465+2016\)
\(E=9765+2016=11781\)
b. \(N=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2012\)\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2+6xy+3y^2\right)+\left(3x+3y\right)+2012\)
\(=\left(x+y\right)^3-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2012\)
\(=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2012\) (*)
Thay x + y =101 vào biểu thức (*) ta được:
\(N=101^3-3.101^2+3.101+2012\)
= 1002013
Câu a ko hỉu đề!
Câu b:
Ta có: N = \(x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2012\)
= \(\left(x^3+3x^2y+3xy^2+y^3\right)-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2012\)
= \(\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2012\)
= \(\left(x+y-1\right)^3+2013\)
Thay x + y = 101 vào N ta được:
N = 1003 + 2013 = 1002013
Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ
Ta có: \(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-1\right)-12\)
Đặt: \(x+y=t\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12\)
\(=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))
Câu d) Đặt biến phụ
Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)
\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)
\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)
\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)
Đặt \(t=5x^2-2x\)
\(=t\left(t-1\right)-6\)
\(=t^2-t-6\)
\(=t^2-t-9+3\)
\(=\left(t^2-3^2\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào
Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức
Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)
Đặt: \(t=2x^2+x-2\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)
Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)
Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ
Ta có: \(x^2+9y^2-9y-3x+6xy+2\)
\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)
\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)
\(=\left(x+3y\right)\left(x+3y-3\right)+2\)
Đặt \(t=x+3y\)
\(=t\left(t-3\right)+2\)
\(=t^2-3t+2\)
\(=\left(t^2-4\right)-\left(3t-6\right)\)
\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)
\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào
Còn mấy bài sau đang nghiên cứu
b: \(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]\)
\(=3\left(1-2xy\right)-2\left(1+3xy\right)\)
\(=3-6xy-2-6xy=-12xy+1\)
c: \(=\left(x+y\right)^3-3\left(x^2+y^2+2xy\right)+3\left(x+y\right)+2012\)
\(=101^2-3\cdot101^2+3\cdot101+2012\)
=1002013
P = 3x2 - 2x + 3y2 - 2y + 6xy +2018
P = 3(x2 + y2 + 2xy) - 2(x + y) + 2018
P = 3[(x + y)2 - 2xy + 2xy] -2.5 + 2018
P = 3[ 52 +0] - 10 + 2018
P = 3.25 + 2008
P = 75 + 2008
P = 2083