\(\dfrac{6+xy}{6-xy}\)  ≤5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

Nếu x,y>0 thì \(26x^5y>0\) còn lại hai đơn thức đều âm

Nếu x>0,y<0 thì \(-\dfrac{1}{2}x^2y^3>0\)còn hai đơn thức còn lại đều âm

Nếu x<0,y>0 thì \(-\dfrac{3}{4}xy^2>0\) còn hai đơn thức còn lại đều âm

Nếu x,y<0 thì \(26x^5y>0\) còn lại hai đa thức đều âm

Vậy cả 3 đơn thức không thể cùng giá trị âm

21 tháng 3 2017

các bạn giúp mk với bucminh

17 tháng 12 2017

Bài Làm

a) Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\)

\(\Rightarrow\)\(x=2k;y=5k\)

\(xy\) \(=90\)

\(\Rightarrow\) \(2k.5k=90\)

\(\Rightarrow k^2.10=90\)

\(\Rightarrow\) \(k^2=9\)

\(\Rightarrow k=\pm3\)

TH1: Với \(k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=5.3=15\end{matrix}\right.\)

TH2: Với \(k=-3\)

\(\Rightarrow\)\(\left\{{}\begin{matrix}x=2.\left(-3\right)=-6\\y=5.\left(-3\right)=-15\end{matrix}\right.\)

17 tháng 12 2017

b) Ta có:

\(\left(x+20\right)^{100}\ge0\) \(\forall\) \(x\)

\(|y+4|\ge0\) \(\forall\) \(y\)

\(\Rightarrow\left(x+20\right)^{100}+|y+4|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+20\right)^{100}=0\\|y+4|=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+20=0\\y+4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-20\\y=-4\end{matrix}\right.\)

Vậy \(x=-20\)\(y=-4\)

15 tháng 5 2017

a) x6+x2y5+xy6+x2y5-xy6

= x6+(x2y5+x2y5)+(xy6-xy6)

= x6+2x2y5

b) \(\dfrac{1}{2}\)x2y3-x2y3+3x2y2z2-z4-3x2y2z2

= (\(\dfrac{1}{2}\)x2y3-x2y3)+(3x2y2z2-3x2y2z2)-z4

= -\(\dfrac{1}{2}\)x2y3-z4

28 tháng 7 2018

undefined

19 tháng 2 2017

Mình nghĩ đề đúng phải là:
        Cho   \(a=x+\frac{1}{x},\)\(b=y+\frac{1}{y},\)\(c=xy+\frac{1}{xy}.\)
        Chứng minh:  \(a^2+b^2+c^2-abc=4\)

19 tháng 2 2017

- Ta có: \(A.B=\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=C+\frac{x}{y}+\frac{y}{x}\)
\(\Rightarrow\)\(A.B-C=\frac{x}{y}+\frac{y}{x}\)\(\Rightarrow\)\(\left(A.B-C\right)^2=\left(\frac{x}{y}+\frac{y}{x}\right)^2\)                                                                  \(\left(1\right)\)
- Ta lại có:       \(A^2=\left(x+\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}+2\) \(\Rightarrow\) \(A^2-2=x^2+\frac{1}{x^2}\)
                       \(B^2=\left(y+\frac{1}{y}\right)^2=y^2+\frac{1}{y^2}+2\)\(\Rightarrow\)\(B^2-2=y^2+\frac{1}{y^2}\)

                        \(C^2=\left(xy+\frac{1}{xy}\right)^2=x^2y^2+\frac{1}{x^2y^2}+2\)\(\Rightarrow\)\(C^2-2=x^2y^2+\frac{1}{x^2y^2}\)

\(\Rightarrow\) \(\left(A^2-2\right)\left(B^2-2\right)=\left(x^2+\frac{1}{x^2}\right)\left(y^2+\frac{1}{y^2}\right)=x^2y^2+\frac{1}{x^2y^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\)
       \(=C^2-2+\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)=\left(C^2-4\right)+\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\right)=\left(C^2-4\right)+\left(\frac{x}{y}+\frac{y}{x}\right)^2\)
\(\Rightarrow\)\(\left(A^2-2\right)\left(B^2-2\right)-\left(C^2-4\right)=\left(\frac{x}{y}+\frac{y}{x}\right)^2\)                                                                               \(\left(2\right)\) 
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(\left(A.B-C\right)^2=\left(A^2-2\right)\left(B^2-2\right)-\left(C^2+4\right)\)
                                      \(\Rightarrow\)\(\left(A.B-C\right)^2=\left(A^2-2\right)\left(B^2-2\right)-C^2-4\)
Triển khai rút gọn, ta được  :    \(A^2+B^2+C^2-A.B.C=4\)