\(x+y=3\);\(x.y=4\)

Tính:\(M...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

Không chắc lắm:

Phép nhân và phép chia các đa thức

30 tháng 9 2017

Ta có : x + y = 3

=> ( x + y )2 = 9

=> x2 + 2xy + y2 = 9

=> x2 + y2 = 9 - 2xy

=> x2 + y2 = 9 - 2 . 4

=> x2 + y2 = 1

Khi đó M = 1 - 8 = -7

Lại có : x2 + y2 = 1

=> ( x2 + y2 )2 = 1

=> x4 + 2x2y2 + y4 = 1

=> x4 + 2 . ( xy )2 + y4 = 1

=> x4 + 2 . 42 + y4 = 1

=> x4 + 32 + y4 = 1

=> x4 + y4 = -31

Vậy M = -7 và N = -31

7 tháng 10 2020

\(M=4x^2+9y^2-12xy\)

\(M=\left(4x^2+12xy+9y^2\right)-24xy\)

\(M=\left(2x+3y\right)^2-24xy\)

\(M=2^2-288=-284\)

7 tháng 10 2020

Ta có: \(x-y=7\Rightarrow x=y+7\)

Thay vào: \(y\left(y+7\right)=60\)

\(\Leftrightarrow y^2+7y-60=0\)

\(\Leftrightarrow\left(y-5\right)\left(y+12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-12\left(ktm\right)\end{cases}}\Rightarrow y=5\Rightarrow x=12\)

Từ đó:

\(N=5^4+12^4=625+20736=21361\)

3 tháng 7 2018

\(C=x^2-y^2\)

Tương tự câu \(A=x^2+y^2\)

\(D=x^4+y^4\)

Thay x + y = 17; x.y = 60 vào \(\left(x+y\right)^2=x^2+2xy+y^2\):

172 = x2 + 2.60 + y2

289 = x2 + 120 + y2

\(\Leftrightarrow x^2+y^2=169\)

Lại có:

\(\left(x^2+y^2\right)^2=x^4+y^4+2x^2y^2\)

\(\left(x^2+y^2\right)^2=x^4+y^4+\left(2xy\right)^2\)

Thay \(x^2+y^2=169;x.y=60\)vào biểu thức trên:

169= x+ y+ 2 . 602

\(\Leftrightarrow x^4+y^4=28561-7200\)

\(\Leftrightarrow x^4+y^4=21361\)

11 tháng 7 2017

a) x2 + y2
= (x2 + 2xy + y2) - 2xy
= (x + y)2 - 2xy
=    m2 - 2n

b) x3 + y3
= (x + y)(x2 - xy + y2)
=     m  (x2 + 2xy + y2 - 3xy)
=     m   [(x + y)2 - 3xy]
=     m . [    m2 - 3n    ]

11 tháng 7 2017

cảm ơn bạn

7 tháng 7 2019

\(\left\{{}\begin{matrix}x+y=13\\xy=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=x^2+2xy+y^2=169\\4xy=88\end{matrix}\right.\Leftrightarrow x^2+2xy+y^2-4xy=81=\left(\pm9\right)^2\) \(+,x-y=9\Rightarrow\left\{{}\begin{matrix}x+y=13\\x-y=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=2\end{matrix}\right.\)

\(+,x-y=-9\Rightarrow\left\{{}\begin{matrix}x+y=13\\x-y=-9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=11\end{matrix}\right.\)

\(\Rightarrow x^2+y^2=11^2+2^2=125;x^3+y^3=11^3+2^3=1339;x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)=\pm\left(11^2+2^2\right)\left(11^2-2^2\right)=\pm14625;x^7+y^7=11^7+2^7=19487299;x-y=\pm\left(11-2\right)=\pm9\)

7 tháng 7 2019

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)=0\Rightarrow ab+bc+ca=-\frac{1}{2}\Rightarrow\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+abc^2+a^2bc\right)=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+\left(a+b+c\right)abc=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+0=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{1}{2};\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1^2=1\)

\(\Rightarrow\left(a^4+b^4+c^4\right)+\frac{1}{2}=1\Rightarrow\left(a^4+b^4+c^4\right)=\frac{1}{2}\Leftrightarrow A=\frac{1}{2}\)