\(\le\)\(\dfrac{9}{4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

Câu hỏi của Kaitou Kid(Kid-sama) - Toán lớp 7 . Bạn check thử cái cách "Bài này lớp 7 dư sức giải..." nhé! Mình đọc nhiều đề thi hsg để tự luyện thấy lời giải của họ như vậy (không có chỗ dấu "=" xảy ra nha,cái chỗ này mình tự thêm) .Không biết đúng hay sai.Còn mấy cách kia là mình tự làm nhé!

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{2x+y+z}=\frac{1}{(x+y)+(x+z)}\leq \frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)

\(\Rightarrow \frac{x}{2x+y+z}\leq \frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự:

\(\frac{y}{2y+x+z}\leq \frac{1}{4}\left(\frac{y}{y+z}+\frac{y}{y+x}\right)\)

\(\frac{z}{2z+x+y}\leq \frac{1}{4}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)

Cộng theo vế:
\(D\leq \frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{4}\) (dpcm)

Dấu bằng xảy ra khi $x=y=z$

21 tháng 3 2017

Nếu x,y>0 thì \(26x^5y>0\) còn lại hai đơn thức đều âm

Nếu x>0,y<0 thì \(-\dfrac{1}{2}x^2y^3>0\)còn hai đơn thức còn lại đều âm

Nếu x<0,y>0 thì \(-\dfrac{3}{4}xy^2>0\) còn hai đơn thức còn lại đều âm

Nếu x,y<0 thì \(26x^5y>0\) còn lại hai đa thức đều âm

Vậy cả 3 đơn thức không thể cùng giá trị âm

21 tháng 3 2017

các bạn giúp mk với bucminh

30 tháng 8 2017

Sửa đề:

$\dfrac{3x-2y}{4}=\dfrac{2z-4x}{9}=\dfrac{4y-3z}{9}$

\(\Leftrightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{27}=\dfrac{2\left(4y-3z\right)}{18}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{27}=\dfrac{8y-6z}{18}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{27}=\dfrac{8y-6z}{18}\)

\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+27+18}=\dfrac{0}{16+27+18}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\4y-3z=0\\2z-4x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

22 tháng 6 2017

a, \(\left[x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\right]x^2-1\)

\(=\left[x\left(x^2-16\right)-\left(x^2+1\right)\right]x^2-1\)

\(=\left[x^3-16x-x^2-1\right]x^2-1\)

\(=x^5-16x^3-x^4-x^2-1\)

b, \(\left(y-3\right)y+3y^2+9-y^2+2\left(y^2-2\right)\)

\(=y^2-3y+3y^2+9-y^2+2y^2-4\)

\(=5y^2-3y+5\)

c, \(\left(x+y\right)\left(x^2x^2-xy+y^2\right)\)

\(=x^5-x^2y+xy^2+x^4y-xy^2+y^3\)

d, \(\left(\dfrac{1}{2}xy+\dfrac{3}{4}y\right).\dfrac{1}{2}xy-\dfrac{3}{4}y\)

\(=\dfrac{1}{4}x^2y^2+\dfrac{3}{8}xy^2-\dfrac{3}{4}y\)

\(=\dfrac{1}{4}y.\left(x^2y+\dfrac{3}{2}xy-3\right)\)

Chúc bạn học tốt!!!

22 tháng 6 2017

ban dùng tính chất phân phối ko

5 tháng 2 2018

Từ điều kiện đề bài ta có:

\(x^2,y^2,z^2\le1\)

Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)

\(\Rightarrow xy\ge0\)

Ta có:

\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)

11 tháng 2 2018

không biết liệu dấu đẳng thức có xẩy ra không nhỉ

15 tháng 7 2017

Bài 1:

\(A=\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}:\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\)

\(A=\dfrac{2.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}:\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{2}{7}.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}\right)}\)

\(A=\dfrac{2}{7}:\dfrac{2}{7}=1\)

Bài 2: Here

Chúc bạn học tốt!!!

15 tháng 7 2017

1. Giải:

Gọi A =M : N

Ta có:M=\(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}\)= \(\dfrac{2.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}\)=\(\dfrac{2}{7}\)

N=\(\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\)=\(\dfrac{2.\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{10}\right)}{7.\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{10}\right)}\)=\(\dfrac{2}{7}\)

Vậy A=M: N \(\Rightarrow\)A=\(\dfrac{2}{7}\):\(\dfrac{2}{7}\)=\(\dfrac{2}{7}\).\(\dfrac{7}{2}\)=\(\dfrac{2.7}{7.2}\)=1

2. Giải:

Với mọi x \(\in\)Q, ta luôn có \(x\) \(\le\) \(|x|\)(dấu bằng xảy ra khi x\(\ge\)0)

a)Nếu \(x+y\)\(\ge\)0 thì\(|x+y|=x+y\).

\(x\le|x|,y\le|y|\)với mọi x, y\(\in\)Q nên:\(|x+y|=x+y\le|x|+|y|\)

b)Nếu x+y < 0 thì\(|x+y|=-\left(x+y\right)\)=\(-x-y\)

Mà -x\(\le\)\(|x|\), -y\(\le\)\(|y|\) nên: \(|x+y|\)= -x-y\(\le\)\(|x|+|y|\)

Vậy với mọi x, y\(\in\)Q ta đều có:\(|x+y|\le|x|+|y|\). Dấu bằng xảy ra khi x, y cùng dấu hoặc ít nhất có một số bằng 0.