Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A=x2-2xy+y2+4xy-4xy
=(x+y)2-4xy
=9-40
=-31
B=x2+y2+2xy-2xy
=(x+y)2-2xy
=9-20
=-11
C=x3+y3
=(x+y)(x2-xy+y2)
=3.(-21)
=-63
a)
A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)
\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)
\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)
a) Ta có x + y = 25
=> (x + y)2 = 625
=> x2 + y2 + 2xy = 625
=> x2 + y2 + 10 = 625
=> x2 +y2 = 615
b) Ta có x + y = 3
=> (x + y)3 = 27
=> x3 + 3x2y + 3xy2 + y3 = 27
=> x3 + y3 + 3xy(x + y) = 27
=> x3 + y3 + 9xy = 27
Lại có x + y = 3
=> (x + y)2 = 9
=> x2 + y2 + 2xy = 9
=> 2xy = 4
=> xy = 2
Khi đó x3 + y3 + 9xy + 27
=> x3 + y3 + 18 = 27
=> x3 + y3 = 9
c) Ta có x - y = 5
=> (x - y)2 = 25
=> x2 + y2 - 2xy = 25
=> 2xy = -10
=> xy = -5
Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50
Bài 4.
a) x2 + y2 = x2 + 2xy + y2 - 2xy
= ( x2 + 2xy + y2 ) - 2xy
= ( x + y )2 - 2xy
= 252 - 2.136
= 625 - 272
= 353
b) x + y = 3
⇔ ( x + y )2 = 9
⇔ x2 + 2xy + y2 = 9
⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )
⇔ 2xy = 4
⇔ xy = 2
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 33 - 3.2.3
= 27 - 18
= 9
Ta có:
\(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)
\(=a^4-4a^2b+4b^2-2b^2=a^4-4a^2b+2b^2\)
\(x^5+y^5=\left(x+y\right)^5-\left(5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)\)
\(=\left(x+y\right)^5-5xy\left(x^3+y^3\right)-10x^2y^2\left(x+y\right)\)
\(=a^5-5\left(a^3-3ab\right)b-10ab^2\)
\(=a^5-5a^3b+15ab^2-10ab^2\)
\(=a^5-5a^3b+5ab^2\)
\(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)
\(=a^2-4a^2b+2b^2\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)
a)
\(C=x^2+y^2=\left(x-y\right)^2+2xy=3^2+2.18=45.\)
b)
\(D=x^3+y^3=\left(x-y\right)^3+3x^2y-3xy^2=\left(x-y\right)^3+3xy\left(x-y\right)=3^3+3.18.3=189\)
a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=10^2-2.\left(-3\right)^2=82\)
b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=1.\left(1-2xy-xy\right)+3xy=1\)
Các câu còn lại tương tự
= ( x3 + 3x2y + 3xy2 + y3 ) - 6xy - 3x2 - 3y2 + 3x + 3y + 2012
= ( x + y )3 - 3xy - 3x2 - 3xy - y2 + 3. ( x + y ) + 2012
= ( x + y )3 - 3x ( x + y ) - 3y .( x + y ) + 3.( x + y ) + 2012
= ( x + y )3 - 3.( x + y ) ( x + y ) + 3( x + y ) + 2012
= 1013 - 3.1012 + 3.101 + 2012
= 1002013
Bài 1:
a) (x+y)2=92=81
=> x2+2xy+y2=81
=> x2+2.14+y2=81
=> x2+y2=53
=> x2-2xy+y2=81-2.14=25
=> (x-y)2=25
=> x-y=5 hoặc x-y=-5
b) Câu a đã tính được x2+y2=53
c) Ta có: x3+y3=(x+y)(x2-xy+y2)=9(53-14)=9.39=351
Bài 2:
Ta có: \(x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1\)
Mà x+y=1
\(\Rightarrow1^2-4.1+1=-2\)
Bài 3:
Ta có: (x+y)3=x3+3x2y+3xy2+y3
= x3+y3+3xy(x+y)
Mà x+y=1 => (x+y)3=x3+y3+3xy=13=1
Bài 4:
Ta có: \(\left(x+y\right)^2=4^2=16\)
\(\Rightarrow x^2+2xy+y^2=16\Rightarrow10+2xy=16\)
\(\Rightarrow2xy=6\Rightarrow xy=3\)
Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=4.\left(10-3\right)\)
\(=4.7=28\)
Bài 5:
Ta có: \(x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=1\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)
\(=x^2-2xy+y^2=\left(x-y\right)^2=1\)
Mấy bài này đầu hè làm hết rồi:))
Bài 1:
a) \(xy=14\Rightarrow x=\frac{14}{y}\)
Thay vào: \(\frac{14}{y}+y=9\)
\(\Leftrightarrow y^2+14-9y=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=7\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}\)
+ Nếu: \(\hept{\begin{cases}x=7\\y=2\end{cases}}\Rightarrow x-y=5\)
+ Nếu: \(\hept{\begin{cases}x=2\\y=7\end{cases}}\Rightarrow x-y=-5\)
b) Ta có: \(x+y=9\)
\(\Leftrightarrow\left(x+y\right)^2=81\)
\(\Leftrightarrow x^2+2xy+y^2=81\)
\(\Rightarrow x^2+y^2=81-2xy=81-2.14=53\)
c) Ta có: \(x+y=9\)
\(\Leftrightarrow\left(x+y\right)^3=9^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=729\)
\(\Leftrightarrow x^3+y^3=729-3xy\left(x+y\right)=729-3.14.9=351\)
Ta có : \(A=x^2+y^2=x^2+2xy+y^2-2xy\)
\(A=\left(x+y\right)^2-2xy\)
Với \(x+y=3\) và \(xy=-10\)
\(\Rightarrow A=3^2-2.\left(-10\right)\)
\(A=9+20\)
\(A=29\)
Tương tự : \(B=x^3+y^3=\left(x+y\right)^3-3xy.\left(x+y\right)\)
\(B=\left(3\right)^3-3.\left(-10\right).3\)
\(B=117\)