K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

ta có: x + y=3 suy ra: (x + y)^2 =9

                                 x^2 + 2xy + y^2 =9 

                                5+2xy =9( thay x^2 + y^2 =5)

                                  2xy =  4

                                  xy =    2

Có: x^3 + y^3= ( x+y)( x^2 -xy + y^2)

                    = 3.(5-2)=3.3=9

nhớ bấm đúng cho mình nhé!

29 tháng 1 2017

là 9 đấy

16 tháng 9 2020

a) Ta có x + y = 25

=> (x + y)2 = 625

=> x2 + y2 + 2xy = 625

=> x2 + y2 + 10 = 625

=> x2 +y2 = 615

b) Ta có x + y = 3

=> (x + y)3 = 27

=> x3 + 3x2y + 3xy2 + y3 = 27

=> x3 + y3 + 3xy(x + y) = 27

=> x3 + y3 + 9xy = 27 

Lại có x + y = 3

=> (x + y)2 = 9

=> x2 + y2 + 2xy = 9

=> 2xy = 4

=> xy = 2

Khi đó x3 + y3 + 9xy + 27

=> x3 + y3 + 18 = 27

=> x3 + y3 = 9

c) Ta có x - y = 5

=> (x - y)2 = 25

=> x2 + y2 - 2xy = 25

=> 2xy = -10

=> xy = -5

Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50

16 tháng 9 2020

Bài 4.

a) x2 + y2 = x2 + 2xy + y2 - 2xy

= ( x2 + 2xy + y2 ) - 2xy

= ( x + y )2 - 2xy

= 252 - 2.136

= 625 - 272

= 353

b) x + y = 3

⇔ ( x + y )2 = 9

⇔ x2 + 2xy + y2 = 9

⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )

⇔ 2xy = 4

⇔ xy = 2

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

= ( x + y )3 - 3xy( x + y )

= 33 - 3.2.3

= 27 - 18

= 9 

24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1

17 tháng 9 2018

a) \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)-y^2\left[\left(y-z\right)+\left(x-y\right)\right]+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)

\(=\left(y-z\right)\left(x^2-y^2\right)-\left(x-y\right)\left(y^2-z^2\right)\)

\(=\left(y-z\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)\left(y-z\right)\left(y+z\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x+y-y-z\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

17 tháng 9 2018

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)^3-x^3-y^3\right]+3z\left(x+y\right)\left(x+y+z\right)\)

\(=3xy\left(x+y\right)+3\left(x+y\right)\left(xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

d) \(\left(x^2+y^2-5\right)^2-4x^2y^2-16xy-16\)

\(=\left(x^2+y^2-5\right)^2-\left(4x^2y^2+16xy+16\right)\)

\(=\left(x^2+y^2-5\right)^2-\left[\left(2xy\right)^2+2.2xy.4+16\right]\)

\(=\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2\)

\(=\left(x^2+y^2-5-2xy-4\right)\left(x^2+y^2-5+2xy+4\right)\)

\(=\left(x^2-2xy+y^2-9\right)\left(x^2+2xy+y^2-1\right)\)

\(=\left[\left(x-y\right)^2-3^2\right]\left[\left(x+y\right)^2-1\right]\)

\(=\left(x-y-3\right)\left(x-y+3\right)\left(x+y-1\right)\left(x+y+1\right)\)

e) \(\left(x^2+4y^2-5\right)^2-16\left(x^2y^2+2xy+1\right)\)

\(=\left(x^2+4y^2-5\right)^2-4^2\left(xy+1\right)^2\)

\(=\left(x^2+4y^2-5\right)^2-\left[4\left(xy+1\right)\right]^2\)

\(=\left(x^2+4y^2-5\right)-\left(4xy+4\right)^2\)

\(=\left(x^2+4y^2-5-4xy-4\right)\left(x^2+4y^2-5+4xy+4\right)\)

\(=\left(x^2+4y^2-4xy-9\right)\left(x^2+4y^2+4xy-1\right)\)

\(=\left[\left(x-2y\right)^2-3^2\right]\left[\left(x+2y\right)^2-1\right]\)

\(=\left(x-2y-3\right)\left(x-2y+3\right)\left(x+2y-1\right)\left(x+2y+1\right)\)

f) \(\left(x-y+5\right)^2-2\left(x-y+5\right)+1\)

\(=\left(x-y+5-1\right)^2\)

\(=\left(x-y+4\right)^2\)

2 tháng 11 2016

câu 1 x-y=5

suy ra (x-y)2 = 25

x2 - 2xy + y2 = 25

-2xy = 25 - (x2 + y2)

-2xy = 10

xy = -5

ta có x3 - y3 = (x-y)(x2+xy+y2)=5(15-5)=5.10=50

 

câu2

(3x-1)2+2(3x-1)(2x+1)+(2x+1)2

=(3x-1+2x+1)2

=(5x)2

=25x2

 

 

Bài 1: a) Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị biểu thức M = ab + bc + cab) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3c) Cho x + y = a; x2 + y2 = b, x3 + y3 = c. Tính giá trị của biểu thức N = a3 - 3ab + 2cd) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và be) Cho x + y = a, x2 + y2 = b. Tính giá trị của biểu thức E = x3 + y3 theo a và bf) Cho x + y = 1, xy= -1. Tính...
Đọc tiếp

Bài 1: 
a) Cho a + b + c = 9, a+ b+ c= 141. Tính giá trị biểu thức M = ab + bc + ca
b) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a; x2 + y= b, x+ y= c. Tính giá trị của biểu thức N = a3 - 3ab + 2c
d) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x- ytheo a và b
e) Cho x + y = a, x+ y= b. Tính giá trị của biểu thức E = x3 + ytheo a và b
f) Cho x + y = 1, xy= -1. Tính giá trị của các biểu thức x+ y2 , x+ y3 , (x2 - y2)2 , x+ y6
g) Cho x - y = 2, xy = 1. Tính giá trị của các biểu thức x+ y2, x3 - y3, (x2- y2)2, x- y6
h) Cho a + b + c = 0, a2+ b+ c= 1. Tính giá trị của biểu thức H = a+ b+ c4
i) Cho a + b = a+ b=1. Chứng minh: a+ b= a4+ b4
j) Cho x + y = a + b; x+ y= a+ b2. CMR: x2000+ y2000 = a2000+ b2000
k) Cho a+ b= 1; c+ d= 1; ac + bd = 0. CMR: ab + cd = 0 
 

3
21 tháng 10 2018

1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)

\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)

26 tháng 9 2020

a,\(a+b+c=9\)

\(\Rightarrow\left(a+b+c\right)^2=81\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=81\)

Vì \(a^2+b^2+c^2=141\)

\(\Rightarrow2ab+2bc+2ca=-60\)

\(\Rightarrow2\left(ab+bc+ca\right)=-60\)

\(\Rightarrow ab+bc+ca=-30\)

Vậy ...

8 tháng 8 2017

1) 2x2-8xy-5x+20y

=2x(x-4y)-5(x-4y)

=(2x-5)(x-4y)

2) x3-x2y-xy+y2

=x2(x-y)-y(x-y)

=(x2-y)(x-y)

3) x2-2xy-4z2+y2

=(x-y)2-(2z)2

=(x-y-2z)(x-y+2z)

4) a3+a2b-a2c-abc

=a2(a+b)-ac(a+b)

=(a2-ac)(a+b)

=a(a-c)(a+b)

5) x3+y3+3x2y+3xy2-x-y

=(x+y)(x2-xy+y2)+3xy(x+y)-(x+y)

=(x+y)(x2-xy+y2+3xy-1)

=(x+y)[(x+y)2-1)]

=(x+y)(x+y+1)(x+y-1)

6) x3+x2y-x2z-xyz

=x2(x+y)-xz(x+y)

=(x2-xz)(x+y)

=x(x-z)(x+y)

7) =[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2

=x(y2+z2)+y(z2+x2)+z(x+y)2

=xy(x+y)+z2(x+y)+z(x+y)2

=(x+y)(xy+z2+zx+zy)

=(x+y)(x+z)(y+z)

8) x3(z-y)+y3(x-z)+z3(y-x)

Tách x-z= -[z-y+y-x]

4 tháng 10 2020

a) Ta có x3 + y3 = 2

<=> x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = 2

<=> ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 ) = 2

<=> ( x + y )3 - 3xy( x + y ) = 2

<=> 13 - 3xy = 2

<=> 3xy = -1

<=> xy = -1/3

Lại có x + y = 1

<=> ( x + y )5 = 1

<=> x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 = 1 ( HĐT bậc 5 này bạn lên mạng tra nhé :)) )

<=> x5 + y5 = 1 - ( 5x4y + 10x3y2 + 10x2y3 + 5xy4 )

<=> x5 + y5 = 1 - [ ( 5x4y + 5xy4 ) + ( 10x3y2 + 10x2y3 ) ]

<=> x5 + y5 = 1 - [ 5xy( x3 + y3 ) + 10x2y2( x + y ) ]

<=> x5 + y5 = 1 - [ 5xy( x3 + y3 ) + 10(xy)2( x + y ) ]

<=> x5 + y5 = 1 - [ 5.(-1/3).2 + 10.(-1/3)2.1 ]

<=> x5 + y5 = 1 - [ -10/3 + 10/9 ]

<=> x5 + y5 = 1 - (-20/9) = 29/9

b) x + y = 8

<=> ( x + y )2 = 64

<=> x2 + 2xy + y2 = 64

<=> 40 + 2xy = 64

<=> 2xy = 24

<=> xy = 12

Ta có : x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 

                       = ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 ) 

                       = ( x + y )3 - 3xy( x + y ) 

                       = 83 - 3.12.8

                       = 512 - 288 = 224

4 tháng 10 2020

cam on

30 tháng 6 2015

A=3.(5-xy)

ta có: \(\left(x+y\right)^2=9\Leftrightarrow x^2+2xy+y^2=9\Leftrightarrow5+2xy=9\Leftrightarrow xy=2\)

=> A=3(5-2)=9

17 tháng 2 2017

9 ban nhe