Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2-4x+1+y^2+2xy-4y\)
\(M=\left(x^2+2xy+y^2\right)-\left(4x+4y\right)\)
\(M=\left(x+y\right)^2-4\left(x+y\right)\)
Mà x + y = 3 nên ta có:
\(M=3^2-4.3=-3\)
Vậy giá trị của biểu thức M= -3
B= (x2+2xy+y2) - (4x+4y) +1
B= (x+y)2 - 4(x+y) +1
Thay x+y=3 vào B
ta được: B= 32 - 4.3 +1
B= 9-12+1
B= -2
Ta có 1/x+1/y+1/z=0
=>1/x+1/y=-1/z
=>(1/x+1/y)^3= (-1/z)^3
=>1/x^3+1/y^3+3.1/x.1/y.(1/x+1/y) =-1/z^3
=>1/x^3+1/y^3+1/z^3= -3.1/x.1/y.(1/x+1/y) =3/(xyz) (vì 1/x+1/y=-1/z)
Mặt khác: 1/x+1/y+1/z=0
=>(xy+yz+zx)/(xyz)=0
=>xy+yz+zx=0
A=yz/x^2 +2yz + xz/y^2+ 2xz + xy/z^2+ 2 xy
=xyz/x^3+xyz/y^3+xyz/z^3 +2(xy+yz+zx) (vì x,y,z khác 0)
=xyz(1/x^3+1/y^3+1/z^3) (vì xy+yz+zx=0)
=xyz.3/(xyz) (vì 1/x^3+1/y^3+1/z^3=3/(xyz) )
=3
Vậy A=3.
Ta có:
\(x^2+y^2+5+2x-4y\)
\(=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)\)
\(=\left(x+1\right)^2+\left(y-2\right)^2\)\(>0\)
\(\Rightarrow\)\(\left|x^2+y^2+5+2x-4y\right|=\left(x+1\right)^2+\left(y-2\right)^2\)
\(-\left(x+y-1\right)^2\)\(< 0\)
\(\Rightarrow\)\(\left|-\left(x+y-1\right)^2\right|=\left(x+y-1\right)^2\)
\(\left|x^2+y^2+5+2x-4y\right|-\left|-\left(x+y-1\right)^2\right|+2xy\)
\(=\left(x+1\right)^2+\left(y-2\right)^2-\left(x+y-1\right)^2+2xy\)
\(=4x-2y+4\) (rút gọn nha)
\(=4.2^{2011}-2.16^{503}+4\)
\(=2^{2013}-2^{2013}+4=4\)
P/s: bn tham khảo nhé, mk ko biết đúng or sai, lm bừa
(x3 - 4y)(x2 - 2xy + 4y)(x2 + 2xy + 4y) tại x = -2; y = 1/2
Thay x = -2; y = 1/2 vào biểu thức, ta có:
[(-2)3 - 4.(1/2)].[(-2)2 - 2.(-2).(1/2) + 4.(1/2)].[(-2)2 + 2.(-2).(1/2) + 4.(1/2)]
= -10.8.4
= -320
Vậy:..
\(M=\left(x^2+2xy+y^2\right)-4\left(x+y\right)+1=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4.3+1=9-12+1=-2\)