Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
t lắm tắt luôn nhé có nhiều câu quá
áp dụng bdt cô si ta có
a) \(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{1.xyz}{xyz}}=4\)
vậy Min của T là 4 dấu = xảy ra khi x=y=z=1
b)
áp dụng BDT cosi ta có
\(x+y+Z\ge3\sqrt[3]{xyz}\)
\(\frac{3}{xyz}+3xyz\ge2\sqrt{\frac{3.3xyz}{xyz}}=6\)
+ vế với vế ta được
\(T+3xyz\ge3\sqrt[3]{xyz}+6\)
\(T\ge3\sqrt[3]{xyz}+6-3xyz\)
có \(xyz\le\frac{\left(x+y+Z\right)^2}{27}\Rightarrow-xyz\ge-\frac{\left(x+y+z\right)^2}{27}\) cùng dấu > thay vào được
\(T\ge3\sqrt[3]{xyz}+6-3\frac{\left(x+y+z\right)^3}{27}\)
Có \(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\) (cosy)
+ vế với vế ta được
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(3\ge\left(x+y+z\right)\Rightarrow-\left(x+y+z\right)\ge-3\) cùng dấu > ta thay được
\(\Rightarrow T\ge3\sqrt[3]{xyz}+6-3\frac{\left(3\right)^3}{27}\)
\(\Rightarrow T\ge6\) dấu = xảy ra khi x=y=z=1
3) dự đoán của chúa pain x=y=z = \(\frac{1}{\sqrt{3}}\)
thử thay vào
\(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\frac{1}{\sqrt{3}^3}}\)
số xấu lắm m tự làm đi tương tự câu 1) 2)
1) dự đoán của chúa Pain x=y=z=1
áp dụng BDT cô si ta có
\(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{xyz}{xyz}}=4.\)
Vậy Min là 4 dấu = xảy ra khi x=y=z=1
2 chia cả tử cả mẫu cho \(x^2+y^2+z^2=3\) ta được
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{3}{xyz}\)
thay số ta được
\(\left(x+y+z+\frac{x}{yz}+\frac{z}{xy}+\frac{y}{zx}\right)\)
áp dụng Cô si ta được
\(VT\ge6\sqrt[6]{\frac{x^2y^2z^2}{y^2z^2x^2}}=6\)
vậy Min là 6 dấu = xảy ra khi x=y=z=1
3) TƯỢNG TỰ cậu 2
chia xyz cho 2 vế
\(x^2+y^2+z^2=1\)
ta được
\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{1}{xyz}\)
thay số
\(\left(x+y+z\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\)
áp dụng BDT cô si ta được
\(\left(\frac{x}{\frac{1}{\sqrt{3}^2}}+\frac{y}{\frac{1}{\sqrt{3}^2}}+\frac{x}{\frac{1}{\sqrt{3}^2}}\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\ge....\)
tự làm
\(z=\frac{P-x-y}{2}\)
\(\Rightarrow x^2+y^2+\frac{\left(P-x-y\right)^2}{4}=3\)
\(\Leftrightarrow5y^2+\left(2x-2P\right)y+5x^2-2Px+P^2-12=0\)
\(\Rightarrow\Delta_y=\left(x-P\right)^2-5.\left(5x^2-2Px+P^2-12\right)\ge0\)
\(\Leftrightarrow36x^2-12Px+P^2+5P^2-90\le0\)
\(\Leftrightarrow5P^2-90\le-\left(6x-P\right)^2\le0\)
\(\Leftrightarrow-3\sqrt{2}\le P\le3\sqrt{2}\)
\(S^2=\left(\left|x\right|+\left|y\right|+\left|x\right|\right)^2=x^2+y^2+z^2+2\left(\left|x\right|\left|y\right|+\left|y\right|\left|z\right|+\left|z\right|\left|x\right|\right)\)
\(S^2=x^2+y^2+z^2+\left|x\right|\left(\left|y\right|+\left|z\right|\right)+\left|y\right|\left(\left|z\right|+\left|x\right|\right)+\left|z\right|\left(\left|x\right|+\left|y\right|\right)\)
Áp dụng BĐT chứa dấu GTTĐ ta có:
\(\left|y\right|+\left|z\right|\ge\left|y+z\right|=\left|-x\right|=\left|x\right|\Rightarrow\left|x\right|\left(\left|y\right|+\left|z\right|\right)\ge z^2\)
Cmtt:\(\left|y\right|\left(\left|z\right|+\left|x\right|\right)\ge y^2,\left|z\right|\left(\left|x\right|+\left|y\right|\right)\ge z^2\)
Vì vậy \(S^2\ge2\left(x^2+y^2+z^2\right)\Rightarrow S^2\ge16\Rightarrow S\ge4\)
Dấu "=" xảy ra khi (x;y;z)=(2;-2;0) và hoán vị của nó, ta có S=4
Áp dụng BĐT svacxơ, ta có
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)
Dấu = xảy ra <=>x=y=1/2
^_^
\(S=x^2+y^2=\left(x+y\right)^2-2xy=4-2xy\)(1)
Mà theo Cau-chy: \(x+y\ge2\sqrt{xy}\Rightarrow2xy\le\frac{\left(x+y\right)^2}{2}=\frac{4}{2}=2\)(2)
Từ (1) và (2) suy ra: \(4-2xy\ge4-\frac{\left(x+y\right)^2}{2}=4-2=2\)
Vậy minS = 2 đạt được khi \(x=y=1\)