\(\left(x+\dfrac{1}{x^{ }}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge8\) với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 11 2017

Lời giải:

Áp dụng BĐT Cô-si với \(x; \frac{1}{x}\) là hai số dương:

\(x+\frac{1}{x}\geq 2\sqrt{x.\frac{1}{x}}=2\)

\(\Rightarrow \left(x+\frac{1}{x}\right)^2\geq 4\)

Tương tự, \(\left(y+\frac{1}{y}\right)^2\geq 4\)

\(\Rightarrow \left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\geq 8\) (đpcm)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\\ y=\frac{1}{y}\end{matrix}\right.\Leftrightarrow x=y=1\)

P.s: Có thể thấy điều kiện $x+y=2$ là dư thừa.

5 tháng 1 2019

Hem thừa .-.

\(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge\dfrac{\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2}{2}\ge\dfrac{\left(x+y+\dfrac{4}{x+y}\right)^2}{2}=8\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2017

Lời giải:

a)

Với \(x>1\Rightarrow x-1>0\). Áp dụng BĐT AM-GM:

\(x=(x-1)+1\geq 2\sqrt{x-1}\)

\(\Rightarrow \frac{\sqrt{x-1}}{x}\leq \frac{\sqrt{x-1}}{2\sqrt{x-1}}=\frac{1}{2}\) (đpcm)

Dấu bằng xảy ra ki \(x-1=1\Leftrightarrow x=2\)

b) Trước tiên, ta có bđt phụ sau:

\(x^3+y^3\geq xy(x+y)\)

\(\Leftrightarrow (x-y)^2(x+y)\geq 0\) (luôn đúng với mọi \(x,y>1\) )

Do đó, \(\frac{x^3+y^3-(x^2+y^2)}{(x-1)(y-1)}\geq \frac{xy(x+y)-x^2-y^2}{(x-1)(y-1)}\geq 8\)

\(\Leftrightarrow xy(x+y)-(x^2+y^2)\geq 8(x-1)(y-1)\)

\(\Leftrightarrow x^2(y-1)+y^2(x-1)-8(x-1)(y-1)\geq 0\)

\(\Leftrightarrow (y-1)[x^2-4(x-1)]+(x-1)[y^2-4(y-1)]\geq 0\)

\(\Leftrightarrow (y-1)(x-2)^2+(x-1)(y-2)^2\geq 0\)

(luôn đúng với mọi \(x,y>1\) )

Do đó ta có đpcm

Dấu bằng xảy ra khi \(x=y=2\)

5 tháng 8 2017

5) a) Ta có: \(a< b+c\)

\(\Rightarrow a^2< ab+ac\)

Tương tự: \(b^2< ba+bc\)

\(c^2< ca+cb\)

Cộng từng vế các BĐT vừa chứng minh, ta được đpcm

b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)

\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)

Nhân từng vế các BĐT trên, ta được

\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)

Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Bài 5:

a)

Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)

\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên

\(b+c-a,a+b-c,c+a-b>0\)

b) Áp dụng BĐT Am-Gm:

\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)

\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)

\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)

Nhân theo vế :

\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)

\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)

Do đó ta có đpcm

c)

\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)

\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)

\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)

\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)

\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)

Do đó ta có đpcm.

1 tháng 4 2018

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\right)\ge6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

\(\Leftrightarrow\dfrac{2x^2}{y^2}+\dfrac{2y^2}{x^2}+8\ge\dfrac{6x}{y}+\dfrac{6y}{x}\)

\(\Leftrightarrow\left(\dfrac{x^2}{y^2}+2+\dfrac{y^2}{x^2}\right)-4\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1+\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1\ge0\)

\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-4.\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)^2+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0^{\left(1\right)}\)

\(^{\left(1\right)}\)đúng \(\Rightarrowđpcm\)

1 tháng 4 2018

Áp dụng BĐT : x4 + y4 ≥ 2x2y2

=> \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2 ( x , y > 0 )

TT , \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2 ( x , y > 0 )

Ta có : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) + 4 ≥ 6 ( 1 )

\(3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\) ≥ 6 ( 2 )

Từ ( 1 ; 2) => đpcm

AH
Akai Haruma
Giáo viên
31 tháng 10 2018

Lời giải:

Từ \(xy+x+y=1\Rightarrow \left\{\begin{matrix} x^2+1=x^2+xy+x+y=x(x+y)+(x+y)=(x+1)(x+y)\\ y^2+1=y^2+xy+x+y=y(x+y)+(x+y)=(y+1)(x+y)\end{matrix}\right.\)

\(xy+x+y=1\Rightarrow x(y+1)+(y+1)=2\Rightarrow (x+1)(y+1)=2\)

Do đó:

\(x\sqrt{\frac{2(y^2+1)}{x^2+1}}+y\sqrt{\frac{2(x^2+1)}{y^2+1}}+\sqrt{\frac{(x^2+1)(y^2+1)}{2}}\)

\(=x\sqrt{\frac{(x+1)(y+1)(y+1)(x+y)}{(x+1)(x+y)}}+y\sqrt{\frac{(x+1)(y+1)(x+1)(x+y)}{(y+1)(x+y)}}+\sqrt{\frac{(x+1)(x+y)(y+1)(x+y)}{(x+1)(y+1)}}\)

\(=x\sqrt{(y+1)^2}+y\sqrt{(x+1)^2}+\sqrt{(x+y)^2}\)

\(=x(y+1)+y(x+1)+x+y=2xy+2x+2y=2(xy+x+y)=2.1=2\)

31 tháng 10 2018

Tick cái nhẹ cho cô loạn thông báo :))

10 tháng 4 2017

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

\(\Leftrightarrow\dfrac{2x^2}{y^2}+\dfrac{2y^2}{x^2}+8\ge6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

\(\Leftrightarrow\left(\dfrac{x^2}{y^2}+2+\dfrac{y^2}{x^2}\right)-4\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\left(\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1\right)+\left(\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1\right)\ge0\)\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)^2+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0\) (đúng)

2 tháng 10 2017

cách khác

đặt \(\dfrac{x}{y}+\dfrac{y}{x}=t\Rightarrow\left|t\right|\ge2\)

\(\Leftrightarrow t^2-3t+2\ge0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2\right)\ge0\)

điều này luôn đúng với mọi |t| >=2 => dpcm

kết luận điều kiện đề hơi thừa

cái cần c/m đúng với mọi x,y khác 0

7 tháng 4 2017

Ta cần chứng minh \((1+a)(1+b)(1+c) \geq (1+\sqrt[3]{abc})^3\)

\(\Leftrightarrow 1+abc+ab+bc+ca+a+b+c \geq 1+3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}+abc\)

\(\Leftrightarrow ab+bc+ca+a+b+c \geq 3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}\)

Đúng theo BĐT AM-GM. Áp dụng vào ta có:

\(\left(1+\frac{1}{x} \right)\left(1+\frac{1}{y} \right)\left(1+\frac{1}{z} \right)=\dfrac{(1+x)(1+y)(1+z)}{xyz} \geq \dfrac{(1+\sqrt[3]{xyz})^3}{xyz} \geq 64\)
Từ \(x+y+z=1\Rightarrow xyz\le \frac{1}{27}\)

\(\Rightarrow \dfrac{(1+\sqrt[3]{xyz})^3}{xyz}=\bigg(\dfrac{1}{\sqrt[3]{xyz}}+1\bigg)^3 \geq 64\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)

7 tháng 4 2017

Áp dụng trực tiếp BĐT AM-GM ta có:

\(1+\dfrac{1}{x}=\dfrac{1}{x}\left(x+y+z+x\right)\ge\dfrac{1}{x}4\sqrt[4]{x^2yz}\)

\(\Rightarrow1+\dfrac{1}{x}\ge\dfrac{4}{x}\sqrt[4]{\dfrac{x^4yz}{x^2}}=4\sqrt[4]{\dfrac{yz}{x^2}}\)

Tương tự ta có: \(1+\dfrac{1}{y}\ge4\sqrt[4]{\dfrac{xz}{y^2}};1+\dfrac{1}{z}\ge4\sqrt[4]{\dfrac{xy}{z^2}}\)

\(\Rightarrow\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)\ge4\sqrt[4]{\dfrac{yz}{x^2}}4\sqrt[4]{\dfrac{xz}{y^2}}4\sqrt[4]{\dfrac{xy}{z^2}}=64\)

Còn tỉ tỉ cách nữa đây, cần thì nhắn tin ==

26 tháng 11 2022

a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

=0

c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{1}{xyz}\)