K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có xy<=(x+y)^2/4 
cm 
<=> 4xy<=x^2+y^2+2xy 
<=> (x^2+y^2-2xy)>=0 
<=>(x-y)^2>=0 (dúng0) 
áp dụng xy<=(x+y)^2/4=2^2/4=1 
daứ = xảy ra là x=y=1 
cách đơn giản +dễ hiểu

30 tháng 9 2018

ai nhanh tk nha

30 tháng 9 2018

Từ  x + y = 2

  => x = 2 - y

Ta có : xy < 1

  <=> y ( 2 - y ) < 1

  <=> 2y - y2 < 1

  <=> 0 < y2 -2y + 1

  <=> 0 < ( y - 1 )2                                     (1)

Vì ( y - 1 )2 là số chính phương nên  (1) luôn đúng 

Vậy ...........

12 tháng 6 2017

a) (x-1)(x2-x+1)=x3-x2+x-x2+x-1=x3-2x2+2x-1 (Đề sai nên không ra được kết quả)

b) (x3+x2y+xy2+y3)(x-y) = x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4 = x4-y4 (Chắc đề này cũng sai nốt...)

10 tháng 10 2016

Ta có:x mũ 2 = y.z và y mũ 2=x.z

=>x mũ 2=yz.y mũ 2

=>x mũ 3.z=y mũ 3.z

=>x mũ 3=y mũ 3

=>x=y

Ta lại có: y=xz và x mũ 2=xy

=>y mũ 2.x.y=xy.z mũ 2

=>y mũ 3.x=z mũ 3.x

=>y mũ 3=z mũ 3

=>y=z

Vì x=y;y=z

=>x=y=z

10 tháng 10 2016

Thank bạn nhìu

 

6 tháng 2 2017

cho x+y=2 và phải chứng minh rằng xy1 thì xy1=bao nhiêu thì mới chứng minh đc chứ

6 tháng 2 2017

đề bài không rõ

27 tháng 12 2015

Áp dụng bất đẳng thức cô si ta có

\(2\sqrt{xy}\le x+y\)

<=>\(2\sqrt{xy}\le2\)

<=>\(\sqrt{xy}\le1\)

<=>\(\left(\sqrt{xy}\right)^2\le1\)

<=>\(xy\le1\)

Dấu ''='' xảy ra <=>x=y=1

27 tháng 12 2015

Theo giả thiết: x + y = 2 => y = 2 - x 
Ta biến đổi tương đương: 
* xy < 1 
<=> 1 - xy > 0 
<=> 1 - x.(2 - x) > 0 
<=> 1 - 2x +x^2 > 0 
<=> (1-x)^2 > 0 
Biểu thức cuối cùng đúng 
Quá trình biến đổi là tương đương nên biểu thức đầu xy < 1 là đúng. 
Vậy: với x + y = 2 thì xy <1

21 tháng 11 2016

x+y=2

(x+y)^2=4

x^2+2xy+y^2=4

(x-y)^2=4-4xy=4(1-xy)

(x-y)^2 lon hon hoac=0 

=> 4(1-xy)>=0

=> 1-xy>=0

=> xy<=1=> dpcm