Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)\(\Rightarrow x-2\sqrt{xy}+y\ge0\)\(\Rightarrow x+y\ge2\sqrt{xy}\)
Mà x + y = 2 \(\Rightarrow\)\(2\ge2\sqrt{xy}\)\(\Rightarrow1\sqrt{xy}\le1\)\(\Rightarrow xy\le1\)
Vi 2 = 2 + 0 ; 1 + 1 .nen x.y = 2 . 0 ; 1.1 chi bang 0 hoac 1 nen x.y <= 1
1. Cho x+y=2.Chứng minh rằng x.y≤1
2. Tìm giá trị lớn nhất của biểu thức: E=\(\dfrac{x^2+8}{x^2+2}\)
1/ Ta có :
\(x+y=2\)
\(\Leftrightarrow x=2-y\)
\(\Leftrightarrow xy=y\left(2-y\right)\)
\(\Leftrightarrow xy=2y-y^2\)
\(\Leftrightarrow xy=-y^2+2y-1+1\)
\(\Leftrightarrow xy=-\left(y-1\right)^2+1\)
Với mọi x ta có :
\(\left(y-1\right)^2\ge0\)
\(-\left(y-1\right)^2\le0\)
\(\Leftrightarrow-\left(y-1\right)^2+1\le1\)
\(\Leftrightarrow xy\le1\left(đpcm\right)\)
2/ Ta có :
\(E=\dfrac{x^2+8}{x^2+2}=\dfrac{x^2+2+6}{x^2+2}=\dfrac{x^2+2}{x^2+2}+\dfrac{6}{x^2+2}=1+\dfrac{6}{x^2+2}\)
Để E lớn nhất thì \(\dfrac{6}{x^2+2}\) đạt GTLN
\(\Leftrightarrow x^2+2\) đạt GTNN
\(\Leftrightarrow x^2+2=1\)
\(\Leftrightarrow x^2=-1\)
\(\Leftrightarrow x\in\varnothing\)
Vậy ....
1)Ta có:\(\left(x-y\right)^2\ge0\forall x,y\in R\)
\(\Rightarrow x^2-2xy+y^2\ge0\)
\(\Rightarrow x^2+2xy+y^2-4xy\ge0\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow4xy\le2^2=4\)
\(\Rightarrow xy\le1\left(đpcm\right)\)
2)Ta có:\(x^2\ge0\)
\(\Rightarrow x^2+2\ge2\)
\(\Rightarrow\dfrac{6}{x^2+2}\le\dfrac{6}{2}=3\)
Áp dụng: \(E=\dfrac{x^2+8}{x^2+2}\)
\(E=\dfrac{x^2+2+6}{x^2+2}\)
\(E=1+\dfrac{6}{x^2+2}\)
\(E\le1+3=4\)
\(\Rightarrow MAXE=4\Leftrightarrow x=0\)
Bài 1:
Ta có:
$x+y+2=xy$
$\Leftrightarrow xy-x-y=2$
$\Leftrightarrow x(y-1)-(y-1)=3$
$\Leftrightarrow (x-1)(y-1)=3$
Đến đây là dạng phương trình tích đơn giản. Ta xét các TH sau:
TH1: $x-1=1$ và $y-1=3$
$\Rightarrow x=2; y=4$
TH2: $x-1=-1$ và $y-1=-3$
$\Rightarrow x=0; y=-2$
Do vai trò $x,y$ như nhau nên $x=4;y=2$ và $x=-2;y=0$ cũng thỏa mãn
Vậy.......
Vậy.........
a)|3-8x|<=19
=>3-8x=19 hoặc 3-8x<19
8x=-16 8x>-16
x=-2 x>-2
Vậy x>=-2
b)Ta có: |x-y|=x-y(x-y>0 => x>y)
|x-y|=-(x-y)(x-y<0 => x<y)
Với x>y thì |x-y|-(x-y)=.... => chia hết cho 2
Với x<y thì |x-y|-(x-y)=... => chia hết cho 2
Ta có: x+y=2⇒y=2−x
Khi đó:x.y=x(2−x)=2x−x2
=1−(x2−2x+1)
=1−(x−1)2≤1
=>x.y≤1(đpcm)
lần sau viết công thức ra cho thuận mắt