Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y=2
\(\Rightarrow\)x=1; x=0; x=-1; x=-2;...
y=1; y=2; y=3; y=4;...
\(\Rightarrow\)x.y= 1.1=1=1
0.2=0<1
-1.3=-3<1
-2.4=-8<1
.............
\(\Rightarrow\)Nếu x+y=2 thì x.y\(\le\)1
Ta có: \(x+y=2\)
\(\Rightarrow x=2-y.\)
Có: \(x.y=\left(2-y\right).y\)
\(\Rightarrow x.y=2y-y^2\)
\(\Rightarrow x.y=-y^2+2y-1+1\)
\(\Rightarrow x.y=-\left(y-1\right)^2+1.\)
Vì \(\left(y-1\right)^2\ge0\) \(\forall y.\)
\(\Rightarrow-\left(y-1\right)^2\le0\) \(\forall y.\)
\(\Rightarrow-\left(y-1\right)^2+1\le1\) \(\forall y.\)
\(\Rightarrow x.y\le1\left(đpcm\right).\)
Chúc bạn học tốt!
x+y=2
=> (x+y)2=4
=> x2+y2+2xy = 4
Áp dụng x2+y2 >= 2xy
=> x2+y2+2xy >= 4xy
Mà x2+y2+2xy = 4
=> 4>= 4xy
=> xy <= 1
cho x+y=2 và phải chứng minh rằng xy1 thì xy1=bao nhiêu thì mới chứng minh đc chứ
x+y=2
(x+y)^2=4
x^2+2xy+y^2=4
(x-y)^2=4-4xy=4(1-xy)
(x-y)^2 lon hon hoac=0
=> 4(1-xy)>=0
=> 1-xy>=0
=> xy<=1=> dpcm